2.3.66 Problems 6501 to 6600

Table 2.663: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

6501

14675

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

0.546

6502

15735

\begin{align*} y_{1}^{\prime }&=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=y_{2}-y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.546

6503

16951

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=6 x+2 y \\ \end{align*}

0.546

6504

635

\begin{align*} x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

0.547

6505

1401

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-x_{2} \\ \end{align*}

0.547

6506

1881

\begin{align*} \left (-2 x^{3}+1\right ) y^{\prime \prime }-10 x^{2} y^{\prime }-8 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.547

6507

3824

\begin{align*} x_{1}^{\prime }&=2 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-3 x_{2} \\ \end{align*}

0.547

6508

15266

\begin{align*} x^{\prime }&=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }&=\frac {x}{2}-\frac {3 y}{2} \\ \end{align*}

0.547

6509

20588

\begin{align*} x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

0.547

6510

21302

\begin{align*} x_{1}^{\prime }&=a x_{1}+5 x_{3} \\ x_{2}^{\prime }&=-x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-3 x_{3} \\ \end{align*}

0.547

6511

1388

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y x&=0 \\ \end{align*}
Series expansion around \(x=4\).

0.548

6512

2454

\begin{align*} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.548

6513

3835

\begin{align*} x_{1}^{\prime }&=-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1} \\ \end{align*}

0.548

6514

17868

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}

0.548

6515

18893

\begin{align*} y^{\prime \prime \prime \prime }-6 y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 9 \\ \end{align*}
Using Laplace transform method.

0.548

6516

19247

\begin{align*} \left (x^{3}+1\right ) y^{\prime }&=x \\ \end{align*}

0.548

6517

20440

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\ \end{align*}

0.548

6518

23562

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=x-y \\ \end{align*}

0.548

6519

63

\begin{align*} 1+y^{\prime }&=2 y \\ y \left (1\right ) &= 1 \\ \end{align*}

0.549

6520

3813

\begin{align*} x_{1}^{\prime }&=2 x_{2} \\ x_{2}^{\prime }&=-2 x_{1} \\ \end{align*}

0.549

6521

4606

\begin{align*} y^{\prime \prime } x +y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.549

6522

5588

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-y \left (x -y\right )&=0 \\ \end{align*}

0.549

6523

10332

\begin{align*} y^{\prime } t +y&=t \\ y \left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

0.549

6524

13064

\begin{align*} a x^{\prime }+b y^{\prime }&=\alpha x+\beta y \\ b x^{\prime }-a y^{\prime }&=\beta x-\alpha y \\ \end{align*}

0.549

6525

15006

\begin{align*} x^{\prime }&=-2 x+3 y \\ y^{\prime }&=-6 x+4 y \\ \end{align*}

0.549

6526

15305

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (-5 x +1\right ) y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.549

6527

15527

\begin{align*} y^{\prime }&=1+y \\ \end{align*}

0.549

6528

17694

\begin{align*} y^{\prime \prime }-4 x^{2} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.549

6529

18117

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

0.549

6530

18682

\begin{align*} x^{\prime }&=4 x+a y \\ y^{\prime }&=8 x-6 y \\ \end{align*}

0.549

6531

15326

\begin{align*} c v^{\prime \prime }+\frac {v^{\prime }}{r}+\frac {v}{L}&=-\delta \left (t \right )+\delta \left (t -1\right ) \\ \end{align*}
Using Laplace transform method.

0.550

6532

633

\begin{align*} x_{1}^{\prime }&=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-x_{2} \\ \end{align*}

0.551

6533

1411

\begin{align*} x_{1}^{\prime }&=\frac {3 x_{1}}{4}-2 x_{2} \\ x_{2}^{\prime }&=x_{1}-\frac {5 x_{2}}{4} \\ \end{align*}

0.551

6534

3852

\begin{align*} x_{1}^{\prime }&=4 x_{2} \\ x_{2}^{\prime }&=-4 x_{1} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.551

6535

3882

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=3 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

0.551

6536

15007

\begin{align*} x^{\prime }&=-11 x-2 y \\ y^{\prime }&=13 x-9 y \\ \end{align*}

0.551

6537

24081

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.551

6538

6493

\begin{align*} a y y^{\prime \prime }&=\left (-1+a \right ) {y^{\prime }}^{2} \\ \end{align*}

0.552

6539

8384

\begin{align*} y^{\prime }&=\left (-1+y\right )^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.552

6540

11109

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2+x \right ) y&=0 \\ \end{align*}

0.552

6541

16837

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.552

6542

16934

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 9 \\ \end{align*}

0.552

6543

17206

\begin{align*} 3 t^{2}-y^{\prime }&=0 \\ \end{align*}

0.552

6544

19262

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=1 \\ y \left (2\right ) &= 0 \\ \end{align*}

0.552

6545

21650

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.552

6546

22236

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.552

6547

23709

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+y x&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= -2 \\ \end{align*}
Series expansion around \(x=3\).

0.552

6548

1893

\begin{align*} \left (-2 x^{2}+1\right ) y^{\prime \prime }+\left (2-6 x \right ) y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.553

6549

4060

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.553

6550

6396

\begin{align*} a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\ \end{align*}

0.553

6551

8327

\begin{align*} y^{\prime }&=y^{2}-3 y \\ \end{align*}

0.553

6552

9674

\begin{align*} x^{\prime }&=10 x-5 y \\ y^{\prime }&=8 x-12 y \\ \end{align*}

0.553

6553

15561

\begin{align*} y^{\prime }&=x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \\ y \left (2\right ) &= -1 \\ \end{align*}

0.553

6554

17826

\begin{align*} x_{1}^{\prime }&=-x_{1}+1 \\ x_{2}^{\prime }&=x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.553

6555

18411

\begin{align*} x^{\prime }&=y+t \\ y^{\prime }&=x-t \\ \end{align*}

0.553

6556

19227

\begin{align*} y^{\prime }&=2 x \\ \end{align*}

0.553

6557

20206

\begin{align*} x^{\prime }-7 x+y&=0 \\ y^{\prime }-2 x-5 y&=0 \\ \end{align*}

0.553

6558

23674

\begin{align*} \left (x -1\right )^{4} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.553

6559

3810

\begin{align*} x_{1}^{\prime }&=2 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.554

6560

3991

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.554

6561

9075

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=1 \\ y \left (2\right ) &= 0 \\ \end{align*}

0.554

6562

9376

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.554

6563

11853

\begin{align*} a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \\ \end{align*}

0.554

6564

13070

\begin{align*} x^{\prime }+y-t^{2}+6 t +1&=0 \\ -x+y^{\prime }&=-3 t^{2}+3 t +1 \\ \end{align*}

0.554

6565

20807

\begin{align*} x^{\prime }-7 x+y&=0 \\ y^{\prime }-2 x-5 y&=0 \\ \end{align*}

0.554

6566

22724

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y&=\sinh \left (x \right )^{4} \\ \end{align*}

0.554

6567

2720

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=2 t^{2}+4 \sin \left (t \right ) \\ \end{align*}

0.555

6568

9700

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-y \\ \end{align*}

0.555

6569

17116

\begin{align*} y^{\prime }&=t \sin \left (t^{2}\right ) \\ y \left (\sqrt {\pi }\right ) &= 0 \\ \end{align*}

0.555

6570

19885

\begin{align*} y^{\prime }+z^{\prime }+6 y&=0 \\ z^{\prime }+5 y+z&=0 \\ \end{align*}

0.555

6571

21999

\begin{align*} \frac {1}{x}+y^{\prime }&=0 \\ \end{align*}

0.555

6572

480

\begin{align*} 3 x^{2} y^{\prime \prime }+2 y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.556

6573

1360

\begin{align*} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.556

6574

1892

\begin{align*} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+8 x \right ) y^{\prime }+4 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.556

6575

2451

\begin{align*} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.556

6576

2751

\begin{align*} x_{1}^{\prime }&=-x_{1}-x_{2} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=-2 x_{3} \\ \end{align*}

0.556

6577

6354

\begin{align*} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\ \end{align*}

0.556

6578

6803

\begin{align*} 2 y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

0.556

6579

9027

\begin{align*} x +y+\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

0.556

6580

14286

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.556

6581

15229

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.556

6582

24047

\begin{align*} y^{\prime \prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}
Using Laplace transform method.

0.556

6583

1030

\begin{align*} x_{1}^{\prime }&=39 x_{1}+8 x_{2}-16 x_{3} \\ x_{2}^{\prime }&=-36 x_{1}-5 x_{2}+16 x_{3} \\ x_{3}^{\prime }&=72 x_{1}+16 x_{2}-29 x_{3} \\ \end{align*}

0.557

6584

1031

\begin{align*} x_{1}^{\prime }&=28 x_{1}+50 x_{2}+100 x_{3} \\ x_{2}^{\prime }&=15 x_{1}+33 x_{2}+60 x_{3} \\ x_{3}^{\prime }&=-15 x_{1}-30 x_{2}-57 x_{3} \\ \end{align*}

0.557

6585

2666

\begin{align*} t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.557

6586

8423

\begin{align*} 3 y^{\prime }+12 y&=4 \\ \end{align*}

0.557

6587

14105

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.557

6588

25355

\begin{align*} t^{2} y^{\prime \prime }+t \left (1-2 t \right ) y^{\prime }+\left (t^{2}-t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.557

6589

479

\begin{align*} 6 x^{2} y^{\prime \prime }+7 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.558

6590

2049

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.558

6591

2552

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

0.558

6592

9378

\begin{align*} y^{\prime \prime }+y^{\prime }-y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.558

6593

9608

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (3 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.558

6594

9639

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right )+t \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.558

6595

10222

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.558

6596

15037

\begin{align*} y^{\prime }&=x y^{3}+x^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.558

6597

16012

\begin{align*} x^{\prime }&=x+4 y \\ y^{\prime }&=-3 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.558

6598

995

\begin{align*} x_{1}^{\prime }&=-40 x_{1}-12 x_{2}+54 x_{3} \\ x_{2}^{\prime }&=35 x_{1}+13 x_{2}-46 x_{3} \\ x_{3}^{\prime }&=-25 x_{1}-7 x_{2}+34 x_{3} \\ \end{align*}

0.559

6599

1931

\begin{align*} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (2 x +1\right ) y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

0.559

6600

3500

\begin{align*} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.559