2.3.78 Problems 7701 to 7800

Table 2.687: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

7701

9665

\begin{align*} x^{\prime }&=-2 x+5 y \\ y^{\prime }&=-2 x+4 y \\ \end{align*}

0.692

7702

10688

\begin{align*} 4 y^{\prime \prime } x -y^{\prime } x +2 y&=0 \\ \end{align*}

0.692

7703

14810

\begin{align*} x^{\prime }&=x-y-z \\ y^{\prime }&=x+3 y+z \\ z^{\prime }&=-3 x-6 y+6 z \\ \end{align*}

0.692

7704

23937

\begin{align*} y^{\prime }&=x +2 z \\ z^{\prime }&=3 x +y-z \\ \end{align*}

0.692

7705

1990

\begin{align*} 2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.693

7706

3376

\begin{align*} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.693

7707

6521

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} \left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.693

7708

19416

\begin{align*} y^{\prime } x +y x +y-1&=0 \\ \end{align*}

0.693

7709

22153

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.693

7710

23581

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}+3 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }&=2 x_{1}+x_{2}+2 t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -{\frac {5}{18}} \\ x_{2} \left (0\right ) &= {\frac {47}{9}} \\ \end{align*}

0.693

7711

2201

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y&=-{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \\ \end{align*}

0.694

7712

2781

\begin{align*} x_{1}^{\prime }&=2 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2}+\delta \left (t -\pi \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.694

7713

3862

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\ \end{align*}

0.694

7714

7664

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.694

7715

8522

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.694

7716

8601

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.694

7717

10225

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

0.694

7718

10925

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=0 \\ \end{align*}

0.694

7719

4053

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.695

7720

6807

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

0.695

7721

10481

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

0.695

7722

16844

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.695

7723

2804

\begin{align*} x^{\prime }&=2 y+z \\ y^{\prime }&=-x-3 y-z \\ z^{\prime }&=x+y-z \\ \end{align*}

0.696

7724

5413

\begin{align*} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x}&=0 \\ \end{align*}

0.696

7725

5642

\begin{align*} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

0.696

7726

7639

\begin{align*} \left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.696

7727

25187

\begin{align*} y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\ \end{align*}

0.696

7728

988

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+2 x_{3} \\ \end{align*}

0.697

7729

4564

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+2 x_{3} \\ \end{align*}

0.697

7730

5641

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

0.697

7731

6500

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y y^{\prime } \\ \end{align*}

0.697

7732

8616

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.697

7733

10493

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=0 \\ \end{align*}

0.697

7734

11053

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y&=0 \\ \end{align*}

0.697

7735

11203

\begin{align*} \left (2+x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

0.697

7736

19619

\begin{align*} \left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

0.697

7737

21661

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\lambda \left (1+\lambda \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.697

7738

2262

\begin{align*} y_{1}^{\prime }&=-y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }&=-2 y_{1}+2 y_{3} \\ y_{3}^{\prime }&=-y_{1}+3 y_{2}-y_{3} \\ \end{align*}

0.698

7739

2283

\begin{align*} y_{1}^{\prime }&=-3 y_{1}-3 y_{2}+4 y_{3} \\ y_{2}^{\prime }&=4 y_{1}+5 y_{2}-8 y_{3} \\ y_{3}^{\prime }&=2 y_{1}+3 y_{2}-5 y_{3} \\ \end{align*}

0.698

7740

4595

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.698

7741

7626

\begin{align*} \left (t^{2}-t -2\right ) x^{\prime \prime }+\left (1+t \right ) x^{\prime }-\left (-2+t \right ) x&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.698

7742

8557

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{4}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.698

7743

9511

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.698

7744

10356

\begin{align*} \cos \left (x \right ) y^{\prime }+\frac {y}{x}&=x \\ \end{align*}
Series expansion around \(x=0\).

0.698

7745

15290

\begin{align*} x^{\prime }&=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }&=-5 x+2 y+6 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.698

7746

19059

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=6 x_{1}+4 x_{2}+6 x_{3} \\ x_{3}^{\prime }&=-5 x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ x_{3} \left (0\right ) &= 5 \\ \end{align*}

0.698

7747

569

\begin{align*} x^{\prime \prime }+9 x&=\delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.699

7748

598

\begin{align*} x^{\prime }&=x+2 y+z \\ y^{\prime }&=6 x-y \\ z^{\prime }&=-x-2 y-z \\ \end{align*}

0.699

7749

5629

\begin{align*} {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

0.699

7750

8556

\begin{align*} 16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.699

7751

21944

\begin{align*} y^{\prime }+y-x^{\prime }+x&=t \\ x^{\prime }+y^{\prime }+x-y&=0 \\ \end{align*}

0.699

7752

6510

\begin{align*} 4 y y^{\prime }-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

0.700

7753

9598

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=10 x^{3}-2 x +5 \\ \end{align*}
Series expansion around \(x=0\).

0.700

7754

18323

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\cos \left (x \right )^{3}} \\ \end{align*}

0.700

7755

18681

\begin{align*} x^{\prime }&=a x+10 y \\ y^{\prime }&=-x-4 y \\ \end{align*}

0.700

7756

2246

\begin{align*} y_{1}^{\prime }&=-6 y_{1}-4 y_{2}-8 y_{3} \\ y_{2}^{\prime }&=-4 y_{1}-4 y_{3} \\ y_{3}^{\prime }&=-8 y_{1}-4 y_{2}-6 y_{3} \\ \end{align*}

0.701

7757

10676

\begin{align*} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f&=0 \\ \end{align*}

0.701

7758

10718

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y&=0 \\ \end{align*}

0.701

7759

11494

\begin{align*} \sin \left (x \right ) y^{\prime }-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4&=0 \\ \end{align*}

0.701

7760

12745

\begin{align*} x^{2} y^{\prime \prime \prime }+5 y^{\prime \prime } x +4 y^{\prime }-\ln \left (x \right )&=0 \\ \end{align*}

0.701

7761

14073

\begin{align*} y&=\left (x +1\right ) {y^{\prime }}^{2} \\ \end{align*}

0.701

7762

15287

\begin{align*} x^{\prime }&=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }&=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.701

7763

25624

\begin{align*} y^{\prime \prime }+y&=1 \\ \end{align*}

0.701

7764

481

\begin{align*} 2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.702

7765

4568

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }&=-2 x_{2}+2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= -2 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

0.702

7766

7172

\begin{align*} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.702

7767

15516

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

0.702

7768

15582

\begin{align*} y^{\prime }&=1-y \\ y \left (0\right ) &= 2 \\ \end{align*}

0.702

7769

20890

\begin{align*} y^{\prime \prime }-y^{\prime } x +3 y&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.702

7770

24139

\begin{align*} x -\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\ \end{align*}

0.702

7771

641

\begin{align*} x_{1}^{\prime }&=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}

0.703

7772

2651

\begin{align*} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.703

7773

9699

\begin{align*} x^{\prime }&=6 x-y \\ y^{\prime }&=5 x+2 y \\ \end{align*}

0.703

7774

12943

\begin{align*} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.703

7775

923

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x+y \\ \end{align*}

0.704

7776

3313

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 y^{\prime } x \\ \end{align*}

0.704

7777

3885

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=x_{2}-8 x_{3} \\ x_{3}^{\prime }&=2 x_{2}-7 x_{3} \\ \end{align*}

0.704

7778

9709

\begin{align*} x^{\prime }&=5 x+9 y+2 \\ y^{\prime }&=-x+11 y+6 \\ \end{align*}

0.704

7779

9834

\begin{align*} \left (4 x^{2}+1\right ) y^{\prime \prime }-8 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.704

7780

10777

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

0.704

7781

10967

\begin{align*} 2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y&=0 \\ \end{align*}

0.704

7782

12998

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right )&=0 \\ \end{align*}

0.704

7783

13063

\begin{align*} x^{\prime }&=a x+b y \\ y^{\prime }&=c x+b y \\ \end{align*}

0.704

7784

14977

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.704

7785

19112

\begin{align*} x {y^{\prime }}^{3}&=1+y^{\prime } \\ \end{align*}

0.704

7786

22307

\begin{align*} s^{\prime }&=9 \sqrt {u} \\ s \left (4\right ) &= 16 \\ \end{align*}

0.704

7787

25335

\begin{align*} y^{\prime \prime }+\frac {\left (1-t \right ) y^{\prime }}{t}+\frac {\left (1-\cos \left (t \right )\right ) y}{t^{3}}&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.704

7788

1272

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= \beta \\ \end{align*}

0.705

7789

4545

\begin{align*} x^{\prime }-2 x+2 y^{\prime }&=-4 \,{\mathrm e}^{2 t} \\ 2 x^{\prime }-3 x+3 y^{\prime }-y&=0 \\ \end{align*}

0.705

7790

4602

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.705

7791

5423

\begin{align*} {y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y&=0 \\ \end{align*}

0.705

7792

8421

\begin{align*} 2 y+y^{\prime }&=0 \\ \end{align*}

0.705

7793

2787

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ x_{3}^{\prime }&=3 x_{3} \\ x_{4}^{\prime }&=2 x_{3}+3 x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 1 \\ \end{align*}

0.706

7794

10689

\begin{align*} 6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y&=0 \\ \end{align*}

0.706

7795

12025

\begin{align*} y^{\prime }&=-\frac {i \left (8 i x +16 y^{4}+8 y^{2} x^{2}+x^{4}\right )}{32 y} \\ \end{align*}

0.706

7796

24048

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=x^{2}-4 \cos \left (3 x \right ) \\ \end{align*}
Using Laplace transform method.

0.706

7797

1845

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -3 y x&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.707

7798

2195

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=5 \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-4 \cos \left (x \right )+4 \sin \left (x \right ) \\ \end{align*}

0.707

7799

2261

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{3}+\frac {y_{2}}{3}-y_{3} \\ y_{2}^{\prime }&=-\frac {4 y_{1}}{3}-\frac {4 y_{2}}{3}+y_{3} \\ y_{3}^{\prime }&=-\frac {2 y_{1}}{3}+\frac {y_{2}}{3} \\ \end{align*}

0.707

7800

2464

\begin{align*} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.707