| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11801 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 11802 |
\begin{align*}
x^{4} {y^{\prime }}^{2}+y^{\prime } y^{2} x -y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.855 |
|
| 11803 |
\begin{align*}
y^{\prime }&=\cos \left (x -y-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 11804 |
\begin{align*}
4 y&={y^{\prime }}^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.855 |
|
| 11805 |
\begin{align*}
t y-\left (t +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 11806 |
\begin{align*}
y^{\prime }&=x -2 y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 11807 |
\begin{align*}
y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 11808 |
\begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 11809 |
\begin{align*}
y+2 y^{\prime }&=3 t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 11810 |
\begin{align*}
2 y y^{\prime } x^{3}+a +3 y^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.857 |
|
| 11811 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.858 |
|
| 11812 |
\begin{align*}
\frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 11813 |
\begin{align*}
y^{\prime } x +x +\left (a x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 11814 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.859 |
|
| 11815 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.859 |
|
| 11816 |
\begin{align*}
2 y+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 11817 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 11818 |
\begin{align*}
x^{2} y^{\prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 11819 |
\begin{align*}
\theta ^{\prime \prime }+4 \theta &=0 \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| 11820 |
\begin{align*}
y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
1.861 |
|
| 11821 |
\begin{align*}
a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.861 |
|
| 11822 |
\begin{align*}
y^{\prime } x +2 y&=\frac {\sin \left (x \right )}{x} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.862 |
|
| 11823 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.862 |
|
| 11824 |
\begin{align*}
y^{\prime }&=\sqrt {-x +y}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.862 |
|
| 11825 |
\begin{align*}
y^{\prime }&=\frac {2 \sqrt {-1+y}}{3} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.863 |
|
| 11826 |
\begin{align*}
x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.863 |
|
| 11827 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}+y_{2} \\
y_{2}^{\prime }&=-y_{1}+2 y_{2} \\
y_{3}^{\prime }&=3 y_{3}-4 y_{4} \\
y_{4}^{\prime }&=4 y_{3}+3 y_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.863 |
|
| 11828 |
\begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.865 |
|
| 11829 |
\begin{align*}
y^{\prime }+y^{2}&=x^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.866 |
|
| 11830 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.866 |
|
| 11831 |
\begin{align*}
y^{\prime }+y \ln \left (x \right )&=x^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.867 |
|
| 11832 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.867 |
|
| 11833 |
\begin{align*}
y^{\prime }&=y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.867 |
|
| 11834 |
\begin{align*}
1+{y^{\prime }}^{2}+2 y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.867 |
|
| 11835 |
\begin{align*}
y^{\prime }&=-y x +1 \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.867 |
|
| 11836 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.868 |
|
| 11837 |
\begin{align*}
-2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.868 |
|
| 11838 |
\begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.868 |
|
| 11839 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.869 |
|
| 11840 |
\begin{align*}
y^{\prime } x +y&=3 x^{3}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.869 |
|
| 11841 |
\begin{align*}
4 y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-\left (5 \tan \left (x \right )^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.869 |
|
| 11842 |
\begin{align*}
y^{\prime }&={\mathrm e}^{3 x +2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11843 |
\begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11844 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11845 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11846 |
\begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11847 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 6 & 1\le t <3 \\ 0 & 3\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.871 |
|
| 11848 |
\begin{align*}
y^{\prime \prime }&=\operatorname {Direct}_{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| 11849 |
\begin{align*}
y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| 11850 |
\begin{align*}
y^{\prime }&=\cos \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| 11851 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| 11852 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.872 |
|
| 11853 |
\begin{align*}
y^{\prime }+9 y&=90 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| 11854 |
\begin{align*}
y^{\prime }&=\frac {1}{\left (1+y\right ) \left (-2+t \right )} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.873 |
|
| 11855 |
\begin{align*}
y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.873 |
|
| 11856 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (\frac {x}{3}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| 11857 |
\begin{align*}
y^{\prime \prime }&=\left (x^{2}+3\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.874 |
|
| 11858 |
\begin{align*}
\frac {x^{\prime }+t x^{\prime \prime }}{t}&=-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| 11859 |
\begin{align*}
2 y y^{\prime }&=x y^{2}+x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| 11860 |
\begin{align*}
y-a +x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| 11861 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}+1}{-6 y+3 y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.876 |
|
| 11862 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.876 |
|
| 11863 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=2 x_{3} \\
x_{3}^{\prime }&=3 x_{4} \\
x_{4}^{\prime }&=4 x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.877 |
|
| 11864 |
\begin{align*}
y^{\prime \prime }&=\frac {x +1}{x -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.877 |
|
| 11865 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.878 |
|
| 11866 |
\begin{align*}
y^{\prime }&=f \left (x \right ) g \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.878 |
|
| 11867 |
\begin{align*}
\left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.878 |
|
| 11868 |
\begin{align*}
z^{\prime }&=z \tan \left (y \right )+\sin \left (y \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.878 |
|
| 11869 |
\begin{align*}
y^{\prime }&=2 x \sec \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.879 |
|
| 11870 |
\begin{align*}
y^{\prime }-\frac {x}{x^{2}+1}&=-\frac {x y}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.879 |
|
| 11871 |
\begin{align*}
y^{\prime }&=\sqrt {x -y} \\
y \left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.881 |
|
| 11872 |
\begin{align*}
y^{\prime }+f \left (x \right )^{2}&=f^{\prime }\left (x \right )+y^{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.881 |
|
| 11873 |
\begin{align*}
x_{1}^{\prime }&=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\
x_{2}^{\prime }&=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\
x_{3}^{\prime }&=-2 x_{1}-2 x_{3}-3 x_{4} \\
x_{4}^{\prime }&=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.881 |
|
| 11874 |
\begin{align*}
x^{\prime }-x^{3}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.882 |
|
| 11875 |
\begin{align*}
\left (1-x \right ) y-x \left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.882 |
|
| 11876 |
\begin{align*}
y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.882 |
|
| 11877 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.883 |
|
| 11878 |
\begin{align*}
y^{\prime \prime }+q y^{\prime }&=\frac {2 y}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.883 |
|
| 11879 |
\begin{align*}
y^{\prime }&=\frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.883 |
|
| 11880 |
\begin{align*}
5 x^{\prime }+x&=\sin \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.883 |
|
| 11881 |
\begin{align*}
y^{\prime }&=y x \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.883 |
|
| 11882 |
\begin{align*}
x^{2}-y^{2}+x +2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.883 |
|
| 11883 |
\begin{align*}
y^{\prime }+{\mathrm e}^{x} y&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.884 |
|
| 11884 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.884 |
|
| 11885 |
\begin{align*}
\sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= y_{1} \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.884 |
|
| 11886 |
\begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.885 |
|
| 11887 |
\begin{align*}
a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.885 |
|
| 11888 |
\begin{align*}
y^{\prime }-\frac {y}{x +1}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| 11889 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| 11890 |
\begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.886 |
|
| 11891 |
\begin{align*}
y^{\prime }&=1+x +y+y x \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.887 |
|
| 11892 |
\begin{align*}
y&=y^{\prime } x -{y^{\prime }}^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.887 |
|
| 11893 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime }+3 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.887 |
|
| 11894 |
\begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.888 |
|
| 11895 |
\begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.889 |
|
| 11896 |
\begin{align*}
y+\left (2 x +y x -3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.889 |
|
| 11897 |
\begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.889 |
|
| 11898 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-a +y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.890 |
|
| 11899 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.891 |
|
| 11900 |
\begin{align*}
x^{\prime }&=t^{3} \left (1-x\right ) \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.891 |
|