2.3.119 Problems 11801 to 11900

Table 2.769: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

11801

1337

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

1.855

11802

5536

\begin{align*} x^{4} {y^{\prime }}^{2}+y^{\prime } y^{2} x -y^{3}&=0 \\ \end{align*}

1.855

11803

8686

\begin{align*} y^{\prime }&=\cos \left (x -y-1\right ) \\ \end{align*}

1.855

11804

19978

\begin{align*} 4 y&={y^{\prime }}^{2}+x^{2} \\ \end{align*}

1.855

11805

24977

\begin{align*} t y-\left (t +2\right ) y^{\prime }&=0 \\ \end{align*}

1.855

11806

25730

\begin{align*} y^{\prime }&=x -2 y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

1.855

11807

1341

\begin{align*} y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\ \end{align*}

1.856

11808

17816

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.856

11809

18521

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

1.856

11810

5199

\begin{align*} 2 y y^{\prime } x^{3}+a +3 y^{2} x^{2}&=0 \\ \end{align*}

1.857

11811

15870

\begin{align*} y^{\prime }&=\cos \left (y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ \end{align*}

1.858

11812

1126

\begin{align*} \frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.859

11813

4767

\begin{align*} y^{\prime } x +x +\left (a x +2\right ) y&=0 \\ \end{align*}

1.859

11814

5500

\begin{align*} x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y&=0 \\ \end{align*}

1.859

11815

15164

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

1.859

11816

16372

\begin{align*} 2 y+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

1.859

11817

18877

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

1.859

11818

20228

\begin{align*} x^{2} y^{\prime }+y&=1 \\ \end{align*}

1.859

11819

14922

\begin{align*} \theta ^{\prime \prime }+4 \theta &=0 \\ \theta \left (0\right ) &= 0 \\ \theta ^{\prime }\left (0\right ) &= 10 \\ \end{align*}

1.861

11820

19458

\begin{align*} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\ \end{align*}

1.861

11821

19997

\begin{align*} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\ \end{align*}

1.861

11822

1225

\begin{align*} y^{\prime } x +2 y&=\frac {\sin \left (x \right )}{x} \\ y \left (2\right ) &= 1 \\ \end{align*}

1.862

11823

14845

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

1.862

11824

22355

\begin{align*} y^{\prime }&=\sqrt {-x +y}+1 \\ \end{align*}

1.862

11825

3607

\begin{align*} y^{\prime }&=\frac {2 \sqrt {-1+y}}{3} \\ y \left (1\right ) &= 1 \\ \end{align*}

1.863

11826

8749

\begin{align*} x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

1.863

11827

15762

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2} \\ y_{2}^{\prime }&=-y_{1}+2 y_{2} \\ y_{3}^{\prime }&=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }&=4 y_{3}+3 y_{4} \\ \end{align*}

1.863

11828

10032

\begin{align*} f^{\prime }&=\frac {1}{f} \\ \end{align*}

1.865

11829

167

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

1.866

11830

3291

\begin{align*} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2}&=x^{2} \\ \end{align*}

1.866

11831

4194

\begin{align*} y^{\prime }+y \ln \left (x \right )&=x^{-x} \\ \end{align*}

1.867

11832

20276

\begin{align*} y^{\prime }+\frac {2 y}{x}&=\sin \left (x \right ) \\ \end{align*}

1.867

11833

21987

\begin{align*} y^{\prime }&=y x +1 \\ \end{align*}

1.867

11834

22325

\begin{align*} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime }&=0 \\ \end{align*}

1.867

11835

25778

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (0\right ) &= -4 \\ \end{align*}

1.867

11836

103

\begin{align*} y^{\prime }+p \left (x \right ) y&=0 \\ \end{align*}

1.868

11837

6039

\begin{align*} -2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.868

11838

19150

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime }&=0 \\ \end{align*}

1.868

11839

2434

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

1.869

11840

8877

\begin{align*} y^{\prime } x +y&=3 x^{3}-1 \\ \end{align*}

1.869

11841

12354

\begin{align*} 4 y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-\left (5 \tan \left (x \right )^{2}+2\right ) y&=0 \\ \end{align*}

1.869

11842

8344

\begin{align*} y^{\prime }&={\mathrm e}^{3 x +2 y} \\ \end{align*}

1.871

11843

9718

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

1.871

11844

10373

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

1.871

11845

16723

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

1.871

11846

20735

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\ \end{align*}

1.871

11847

25302

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 6 & 1\le t <3 \\ 0 & 3\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.871

11848

25544

\begin{align*} y^{\prime \prime }&=\operatorname {Direct}_{t} \\ \end{align*}

1.871

11849

2966

\begin{align*} y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x&=1 \\ \end{align*}

1.872

11850

8682

\begin{align*} y^{\prime }&=\cos \left (x -y\right ) \\ \end{align*}

1.872

11851

10421

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

1.872

11852

13687

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y&=0 \\ \end{align*}

1.872

11853

25405

\begin{align*} y^{\prime }+9 y&=90 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.872

11854

15857

\begin{align*} y^{\prime }&=\frac {1}{\left (1+y\right ) \left (-2+t \right )} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.873

11855

15930

\begin{align*} y^{\prime }&=y+4 \cos \left (t^{2}\right ) \\ \end{align*}

1.873

11856

3165

\begin{align*} y^{\prime \prime }+y&=\tan \left (\frac {x}{3}\right )^{2} \\ \end{align*}

1.874

11857

10231

\begin{align*} y^{\prime \prime }&=\left (x^{2}+3\right ) y \\ \end{align*}

1.874

11858

14239

\begin{align*} \frac {x^{\prime }+t x^{\prime \prime }}{t}&=-2 \\ \end{align*}

1.874

11859

5079

\begin{align*} 2 y y^{\prime }&=x y^{2}+x^{3} \\ \end{align*}

1.875

11860

15339

\begin{align*} y-a +x^{2} y^{\prime }&=0 \\ \end{align*}

1.875

11861

1149

\begin{align*} y^{\prime }&=\frac {3 x^{2}+1}{-6 y+3 y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.876

11862

5578

\begin{align*} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+2 y^{2}&=0 \\ \end{align*}

1.876

11863

609

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=2 x_{3} \\ x_{3}^{\prime }&=3 x_{4} \\ x_{4}^{\prime }&=4 x_{1} \\ \end{align*}

1.877

11864

16157

\begin{align*} y^{\prime \prime }&=\frac {x +1}{x -1} \\ \end{align*}

1.877

11865

4123

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

1.878

11866

4741

\begin{align*} y^{\prime }&=f \left (x \right ) g \left (y\right ) \\ \end{align*}

1.878

11867

6593

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

1.878

11868

14900

\begin{align*} z^{\prime }&=z \tan \left (y \right )+\sin \left (y \right ) \\ \end{align*}

1.878

11869

48

\begin{align*} y^{\prime }&=2 x \sec \left (y\right ) \\ \end{align*}

1.879

11870

23162

\begin{align*} y^{\prime }-\frac {x}{x^{2}+1}&=-\frac {x y}{x^{2}+1} \\ \end{align*}

1.879

11871

31

\begin{align*} y^{\prime }&=\sqrt {x -y} \\ y \left (2\right ) &= 2 \\ \end{align*}

1.881

11872

4653

\begin{align*} y^{\prime }+f \left (x \right )^{2}&=f^{\prime }\left (x \right )+y^{2} \\ \end{align*}

1.881

11873

19055

\begin{align*} x_{1}^{\prime }&=-8 x_{1}-16 x_{2}-16 x_{3}-17 x_{4} \\ x_{2}^{\prime }&=-2 x_{1}-10 x_{2}-8 x_{3}-7 x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-2 x_{3}-3 x_{4} \\ x_{4}^{\prime }&=6 x_{1}+14 x_{2}+14 x_{3}+14 x_{4} \\ \end{align*}

1.881

11874

7393

\begin{align*} x^{\prime }-x^{3}&=x \\ \end{align*}

1.882

11875

14033

\begin{align*} \left (1-x \right ) y-x \left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

1.882

11876

15161

\begin{align*} y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}

1.882

11877

91

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

1.883

11878

7211

\begin{align*} y^{\prime \prime }+q y^{\prime }&=\frac {2 y}{x^{2}} \\ \end{align*}

1.883

11879

12011

\begin{align*} y^{\prime }&=\frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \\ \end{align*}

1.883

11880

19758

\begin{align*} 5 x^{\prime }+x&=\sin \left (3 t \right ) \\ \end{align*}

1.883

11881

23132

\begin{align*} y^{\prime }&=y x \\ y \left (1\right ) &= 2 \\ \end{align*}

1.883

11882

23200

\begin{align*} x^{2}-y^{2}+x +2 y y^{\prime } x&=0 \\ \end{align*}

1.883

11883

8464

\begin{align*} y^{\prime }+{\mathrm e}^{x} y&=1 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.884

11884

11710

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }-x&=0 \\ \end{align*}

1.884

11885

25212

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= y_{1} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\ \end{align*}

1.884

11886

9814

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\ \end{align*}

1.885

11887

13223

\begin{align*} a \,x^{2} \left (x -1\right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s&=0 \\ \end{align*}

1.885

11888

15035

\begin{align*} y^{\prime }-\frac {y}{x +1}+y^{2}&=0 \\ \end{align*}

1.885

11889

20494

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

1.885

11890

24883

\begin{align*} y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

1.886

11891

92

\begin{align*} y^{\prime }&=1+x +y+y x \\ y \left (0\right ) &= 0 \\ \end{align*}

1.887

11892

3329

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{{2}/{3}} \\ \end{align*}

1.887

11893

23143

\begin{align*} \left (x^{2}+4\right ) y^{\prime }+3 y x&=0 \\ \end{align*}

1.887

11894

15376

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

1.888

11895

8318

\begin{align*} y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.889

11896

8469

\begin{align*} y+\left (2 x +y x -3\right ) y^{\prime }&=0 \\ \end{align*}

1.889

11897

8718

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.889

11898

4897

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-a +y x&=0 \\ \end{align*}

1.890

11899

3583

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

1.891

11900

14886

\begin{align*} x^{\prime }&=t^{3} \left (1-x\right ) \\ x \left (0\right ) &= 3 \\ \end{align*}

1.891