2.3.118 Problems 11701 to 11800

Table 2.767: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

11701

4766

\begin{align*} y^{\prime } x +2+\left (-x +3\right ) y&=0 \\ \end{align*}

1.815

11702

5953

\begin{align*} x^{2} y^{\prime \prime }&=b x +a \\ \end{align*}

1.815

11703

16425

\begin{align*} y y^{\prime \prime }+2 {y^{\prime }}^{2}&=3 y y^{\prime } \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {3}{4}} \\ \end{align*}

1.815

11704

23166

\begin{align*} y^{\prime }+\frac {y}{x}&=-2 x y^{2} \\ \end{align*}

1.815

11705

12284

\begin{align*} y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\ \end{align*}

1.816

11706

22482

\begin{align*} x^{2} y^{\prime \prime }&=x^{2}+1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.816

11707

1216

\begin{align*} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

1.817

11708

2407

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {1+t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.817

11709

19585

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

1.817

11710

21400

\begin{align*} y^{\prime }+\tan \left (\theta \right ) y&=\cos \left (\theta \right ) \\ \end{align*}

1.817

11711

13773

\begin{align*} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y&=0 \\ \end{align*}

1.818

11712

20203

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

1.818

11713

9193

\begin{align*} x^{2} y^{\prime }+y&=x^{2} \\ \end{align*}

1.819

11714

315

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

1.820

11715

7189

\begin{align*} 4 \left (1-x \right ) x y^{\prime \prime }-4 y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.820

11716

1128

\begin{align*} -\frac {3 y}{2}+y^{\prime }&=2 \,{\mathrm e}^{t}+3 t \\ \end{align*}

1.821

11717

7606

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

1.821

11718

15504

\begin{align*} {y^{\prime }}^{2}-9 y x&=0 \\ \end{align*}

1.821

11719

2496

\begin{align*} y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

1.822

11720

4904

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+x^{2}+y x&=0 \\ \end{align*}

1.822

11721

2064

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.823

11722

8651

\begin{align*} 4 y^{\prime \prime }+24 y^{\prime }+37 y&=17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.823

11723

21027

\begin{align*} x^{\prime }+x&=a t \\ \end{align*}

1.823

11724

14174

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

1.824

11725

20125

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

1.825

11726

17406

\begin{align*} y^{\prime \prime }+y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.826

11727

4220

\begin{align*} y^{\prime }&=\frac {4 x y}{x^{2}+1} \\ \end{align*}

1.827

11728

15875

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (0\right ) &= 2 \\ \end{align*}

1.827

11729

16587

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

1.827

11730

21383

\begin{align*} 3 x^{2}+4 y x +\left (2 x^{2}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

1.827

11731

25702

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e} \\ \end{align*}

1.827

11732

4099

\begin{align*} y^{\prime }+y&=x^{2}+2 \\ \end{align*}

1.828

11733

8819

\begin{align*} {y^{\prime }}^{2}&=a^{2}-y^{2} \\ \end{align*}

1.828

11734

13730

\begin{align*} y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\ \end{align*}

1.828

11735

20954

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= {\frac {1}{4}} \\ \end{align*}

1.828

11736

8465

\begin{align*} x^{2} y^{\prime }-y&=x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

1.829

11737

15876

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (0\right ) &= -1 \\ \end{align*}

1.830

11738

22585

\begin{align*} y^{\prime } x +2 y-\cos \left (x \right ) x&=0 \\ \end{align*}

1.831

11739

383

\begin{align*} x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.832

11740

1112

\begin{align*} 2 y+y^{\prime } t&=t^{2}-t +1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

1.832

11741

4221

\begin{align*} y^{\prime }&=\frac {2 y}{x^{2}-1} \\ \end{align*}

1.832

11742

20692

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

1.832

11743

12846

\begin{align*} y^{\prime \prime }+6 a^{10} y^{11}-y&=0 \\ \end{align*}

1.833

11744

13871

\begin{align*} x^{4} y^{\prime \prime }+a y&=0 \\ \end{align*}

1.833

11745

16135

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=13 \operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.833

11746

22207

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.833

11747

2459

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t -\left (1+t \right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

1.834

11748

16338

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

1.834

11749

21580

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \\ \end{align*}

1.834

11750

100

\begin{align*} \frac {1+2 x y}{x^{\prime }}&=y^{2}+1 \\ \end{align*}

1.835

11751

2543

\begin{align*} y^{\prime \prime }+y^{\prime } t +y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.835

11752

24727

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{4} \\ \end{align*}

1.835

11753

7317

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

1.836

11754

8221

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.836

11755

11282

\begin{align*} y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \\ \end{align*}

1.836

11756

17593

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime }&=\sec \left (3 t \right ) \\ \end{align*}

1.836

11757

839

\begin{align*} y^{\prime \prime }-4 y&=12 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

1.837

11758

6986

\begin{align*} y^{\prime }&=x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \\ \end{align*}

1.837

11759

20273

\begin{align*} y^{\prime }+3 x^{2} y&=x^{5} {\mathrm e}^{x^{3}} \\ \end{align*}

1.838

11760

4076

\begin{align*} 5 y x +4 y^{2}+1+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\ \end{align*}

1.839

11761

4641

\begin{align*} y^{\prime }&=\sec \left (x \right )-\tan \left (x \right ) y \\ \end{align*}

1.839

11762

25622

\begin{align*} y^{\prime \prime }&=t \\ \end{align*}

1.839

11763

13843

\begin{align*} x^{3} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

1.840

11764

15877

\begin{align*} w^{\prime }&=\left (1-w\right ) \sin \left (w\right ) \\ \end{align*}

1.840

11765

22452

\begin{align*} i^{\prime }+3 i&={\mathrm e}^{-2 t} \\ i \left (0\right ) &= 5 \\ \end{align*}

1.840

11766

1139

\begin{align*} x +y y^{\prime } {\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.841

11767

6388

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\ \end{align*}

1.841

11768

8896

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

1.841

11769

19417

\begin{align*} x^{2} y^{\prime }-y^{2}&=2 y x \\ \end{align*}

1.841

11770

9055

\begin{align*} y^{\prime } x&=y+x^{2}+y^{2} \\ \end{align*}

1.842

11771

19518

\begin{align*} y^{\prime \prime }+y&=\cot \left (2 x \right ) \\ \end{align*}

1.842

11772

20953

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

1.843

11773

4903

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x&=0 \\ \end{align*}

1.844

11774

21285

\begin{align*} x^{\prime }-x&=\operatorname {Heaviside}\left (t -a \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.844

11775

30

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.845

11776

4919

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=n \left (1-2 y x +y^{2}\right ) \\ \end{align*}

1.845

11777

5219

\begin{align*} \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 y x&=0 \\ \end{align*}

1.845

11778

14038

\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

1.845

11779

87

\begin{align*} y^{\prime }+2 y x&=x \\ y \left (0\right ) &= -2 \\ \end{align*}

1.846

11780

9624

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.846

11781

11822

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x&=0 \\ \end{align*}

1.846

11782

16588

\begin{align*} y^{\prime \prime }-9 y&=36 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

1.846

11783

14903

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=5 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

1.847

11784

54

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\ \end{align*}

1.848

11785

6535

\begin{align*} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.848

11786

1179

\begin{align*} y^{\prime }&=y \left (3-t y\right ) \\ \end{align*}

1.849

11787

3955

\begin{align*} y^{\prime }+2 y&=2 \operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.849

11788

6490

\begin{align*} 4 y y^{\prime \prime }&=a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2} \\ \end{align*}

1.849

11789

4894

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-1&=y x \\ \end{align*}

1.851

11790

20268

\begin{align*} y-x \sin \left (x^{2}\right )+y^{\prime } x&=0 \\ \end{align*}

1.851

11791

21334

\begin{align*} -y+y^{\prime } x&=0 \\ \end{align*}

1.851

11792

179

\begin{align*} x^{3}+3 y-y^{\prime } x&=0 \\ \end{align*}

1.852

11793

1258

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

1.852

11794

6026

\begin{align*} a \left (1+a \right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.852

11795

15874

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ w \left (3\right ) &= 1 \\ \end{align*}

1.852

11796

18123

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}&=4 y^{2} \\ \end{align*}

1.852

11797

23184

\begin{align*} y \,{\mathrm e}^{y x}+\left (x \,{\mathrm e}^{y x}+1\right ) y^{\prime }&=0 \\ \end{align*}

1.852

11798

25449

\begin{align*} -2 y+y^{\prime }&=\cos \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.852

11799

14056

\begin{align*} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\ \end{align*}

1.853

11800

21379

\begin{align*} 3 x \left (y x -2\right )+\left (x^{3}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

1.854