| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11701 |
\begin{align*}
y^{\prime } x +2+\left (-x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.815 |
|
| 11702 |
\begin{align*}
x^{2} y^{\prime \prime }&=b x +a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.815 |
|
| 11703 |
\begin{align*}
y y^{\prime \prime }+2 {y^{\prime }}^{2}&=3 y y^{\prime } \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= {\frac {3}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.815 |
|
| 11704 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=-2 x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.815 |
|
| 11705 |
\begin{align*}
y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.816 |
|
| 11706 |
\begin{align*}
x^{2} y^{\prime \prime }&=x^{2}+1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.816 |
|
| 11707 |
\begin{align*}
3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.817 |
|
| 11708 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {1+t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.817 |
|
| 11709 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.817 |
|
| 11710 |
\begin{align*}
y^{\prime }+\tan \left (\theta \right ) y&=\cos \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.817 |
|
| 11711 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.818 |
|
| 11712 |
\begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.818 |
|
| 11713 |
\begin{align*}
x^{2} y^{\prime }+y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.819 |
|
| 11714 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.820 |
|
| 11715 |
\begin{align*}
4 \left (1-x \right ) x y^{\prime \prime }-4 y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.820 |
|
| 11716 |
\begin{align*}
-\frac {3 y}{2}+y^{\prime }&=2 \,{\mathrm e}^{t}+3 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.821 |
|
| 11717 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.821 |
|
| 11718 |
\begin{align*}
{y^{\prime }}^{2}-9 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.821 |
|
| 11719 |
\begin{align*}
y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| 11720 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+x^{2}+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| 11721 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.823 |
|
| 11722 |
\begin{align*}
4 y^{\prime \prime }+24 y^{\prime }+37 y&=17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.823 |
|
| 11723 |
\begin{align*}
x^{\prime }+x&=a t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.823 |
|
| 11724 |
\begin{align*}
y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.824 |
|
| 11725 |
\begin{align*}
y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.825 |
|
| 11726 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.826 |
|
| 11727 |
\begin{align*}
y^{\prime }&=\frac {4 x y}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.827 |
|
| 11728 |
\begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.827 |
|
| 11729 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.827 |
|
| 11730 |
\begin{align*}
3 x^{2}+4 y x +\left (2 x^{2}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.827 |
|
| 11731 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.827 |
|
| 11732 |
\begin{align*}
y^{\prime }+y&=x^{2}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.828 |
|
| 11733 |
\begin{align*}
{y^{\prime }}^{2}&=a^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.828 |
|
| 11734 |
\begin{align*}
y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.828 |
|
| 11735 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.828 |
|
| 11736 |
\begin{align*}
x^{2} y^{\prime }-y&=x^{3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| 11737 |
\begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.830 |
|
| 11738 |
\begin{align*}
y^{\prime } x +2 y-\cos \left (x \right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.831 |
|
| 11739 |
\begin{align*}
x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 11740 |
\begin{align*}
2 y+y^{\prime } t&=t^{2}-t +1 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 11741 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x^{2}-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 11742 |
\begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 11743 |
\begin{align*}
y^{\prime \prime }+6 a^{10} y^{11}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.833 |
|
| 11744 |
\begin{align*}
x^{4} y^{\prime \prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| 11745 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=13 \operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| 11746 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| 11747 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t -\left (1+t \right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
1.834 |
|
| 11748 |
\begin{align*}
y^{\prime }&=x^{2}-2 y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.834 |
|
| 11749 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.834 |
|
| 11750 |
\begin{align*}
\frac {1+2 x y}{x^{\prime }}&=y^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| 11751 |
\begin{align*}
y^{\prime \prime }+y^{\prime } t +y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.835 |
|
| 11752 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| 11753 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.836 |
|
| 11754 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.836 |
|
| 11755 |
\begin{align*}
y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.836 |
|
| 11756 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime }&=\sec \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.836 |
|
| 11757 |
\begin{align*}
y^{\prime \prime }-4 y&=12 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| 11758 |
\begin{align*}
y^{\prime }&=x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| 11759 |
\begin{align*}
y^{\prime }+3 x^{2} y&=x^{5} {\mathrm e}^{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 11760 |
\begin{align*}
5 y x +4 y^{2}+1+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.839 |
|
| 11761 |
\begin{align*}
y^{\prime }&=\sec \left (x \right )-\tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| 11762 |
\begin{align*}
y^{\prime \prime }&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| 11763 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| 11764 |
\begin{align*}
w^{\prime }&=\left (1-w\right ) \sin \left (w\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| 11765 |
\begin{align*}
i^{\prime }+3 i&={\mathrm e}^{-2 t} \\
i \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| 11766 |
\begin{align*}
x +y y^{\prime } {\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| 11767 |
\begin{align*}
y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| 11768 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| 11769 |
\begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| 11770 |
\begin{align*}
y^{\prime } x&=y+x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| 11771 |
\begin{align*}
y^{\prime \prime }+y&=\cot \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| 11772 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.843 |
|
| 11773 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.844 |
|
| 11774 |
\begin{align*}
x^{\prime }-x&=\operatorname {Heaviside}\left (t -a \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.844 |
|
| 11775 |
\begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.845 |
|
| 11776 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=n \left (1-2 y x +y^{2}\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.845 |
|
| 11777 |
\begin{align*}
\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.845 |
|
| 11778 |
\begin{align*}
2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.845 |
|
| 11779 |
\begin{align*}
y^{\prime }+2 y x&=x \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 11780 |
\begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.846 |
|
| 11781 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 11782 |
\begin{align*}
y^{\prime \prime }-9 y&=36 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 11783 |
\begin{align*}
y^{\prime }+2 \cot \left (x \right ) y&=5 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.847 |
|
| 11784 |
\begin{align*}
y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.848 |
|
| 11785 |
\begin{align*}
\left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.848 |
|
| 11786 |
\begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.849 |
|
| 11787 |
\begin{align*}
y^{\prime }+2 y&=2 \operatorname {Heaviside}\left (t -1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.849 |
|
| 11788 |
\begin{align*}
4 y y^{\prime \prime }&=a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.849 |
|
| 11789 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-1&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| 11790 |
\begin{align*}
y-x \sin \left (x^{2}\right )+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| 11791 |
\begin{align*}
-y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| 11792 |
\begin{align*}
x^{3}+3 y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 11793 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 11794 |
\begin{align*}
a \left (1+a \right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 11795 |
\begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (3\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.852 |
|
| 11796 |
\begin{align*}
2 y y^{\prime \prime }-3 {y^{\prime }}^{2}&=4 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.852 |
|
| 11797 |
\begin{align*}
y \,{\mathrm e}^{y x}+\left (x \,{\mathrm e}^{y x}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.852 |
|
| 11798 |
\begin{align*}
-2 y+y^{\prime }&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 11799 |
\begin{align*}
x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.853 |
|
| 11800 |
\begin{align*}
3 x \left (y x -2\right )+\left (x^{3}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.854 |
|