2.3.121 Problems 12001 to 12100

Table 2.773: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

12001

21226

\begin{align*} x^{\prime }&=x+2 y+{\mathrm e}^{t} \\ y^{\prime }&=x-2 y-{\mathrm e}^{t} \\ \end{align*}

1.923

12002

22002

\begin{align*} \sin \left (x \right )+y y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ \end{align*}

1.923

12003

2590

\begin{align*} t^{2} y^{\prime \prime }-2 y&=t^{2} \\ \end{align*}

1.924

12004

8214

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 8 \\ \end{align*}

1.924

12005

21775

\begin{align*} 2 {y^{\prime }}^{2}-2 y y^{\prime }-1&=0 \\ \end{align*}

1.924

12006

22487

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

1.924

12007

20792

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}

1.925

12008

21185

\begin{align*} x^{\prime \prime \prime }-3 x^{\prime }+k x&=0 \\ x \left (0\right ) &= 1 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

1.925

12009

4934

\begin{align*} x \left (1-x \right ) y^{\prime }&=2 y x +2 \\ \end{align*}

1.926

12010

6378

\begin{align*} \left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

1.926

12011

1556

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

1.927

12012

5451

\begin{align*} x {y^{\prime }}^{2}+y^{\prime }&=y \\ \end{align*}

1.927

12013

23483

\begin{align*} y^{\prime \prime }+y&=x +{\mathrm e}^{-x} \\ \end{align*}

1.927

12014

15241

\begin{align*} y^{\prime \prime }+4 \pi ^{2} y&=3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.928

12015

21380

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.928

12016

2808

\begin{align*} x^{\prime }&=x \left (1-x\right ) \\ \end{align*}

1.929

12017

3280

\begin{align*} 2 y y^{\prime \prime }&=y^{3}+2 {y^{\prime }}^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.930

12018

14487

\begin{align*} y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1}&=x -1 \\ \end{align*}

1.930

12019

23338

\begin{align*} y^{\prime \prime }-9 y&=0 \\ \end{align*}

1.930

12020

5591

\begin{align*} 3 y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+4 y^{2}&=0 \\ \end{align*}

1.931

12021

12422

\begin{align*} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right )&=0 \\ \end{align*}

1.931

12022

14255

\begin{align*} x^{\prime }&=\left (a +\frac {b}{t}\right ) x \\ x \left (1\right ) &= 1 \\ \end{align*}

1.931

12023

14309

\begin{align*} x^{\prime \prime }+x&=t^{2} \\ \end{align*}

1.931

12024

2298

\begin{align*} y \cos \left (t \right )+y^{\prime }&=0 \\ \end{align*}

1.932

12025

4283

\begin{align*} y^{\prime } x +y&=\cos \left (x \right ) x^{2} \\ \end{align*}

1.932

12026

24149

\begin{align*} v v^{\prime }&=g \\ v \left (x_{0} \right ) &= v_{0} \\ \end{align*}

1.932

12027

25039

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= -1 \\ \end{align*}

1.932

12028

2328

\begin{align*} 3 y^{\prime } t&=y \cos \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

1.933

12029

5967

\begin{align*} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.933

12030

8435

\begin{align*} y&=\left ({\mathrm e}^{y} y-2 x \right ) y^{\prime } \\ \end{align*}

1.933

12031

25231

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\ \end{align*}

1.933

12032

522

\begin{align*} 16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y&=0 \\ \end{align*}

1.934

12033

15383

\begin{align*} 6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.934

12034

16818

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime }&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.935

12035

22997

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y&=x \\ \end{align*}

1.935

12036

24872

\begin{align*} y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

1.935

12037

1171

\begin{align*} y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\ \end{align*}

1.937

12038

12552

\begin{align*} \left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.937

12039

21321

\begin{align*} x^{\prime \prime }+\lambda x-x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (1\right ) &= 0 \\ \end{align*}

1.937

12040

22007

\begin{align*} y^{\prime }&=\frac {x^{2} y-y}{1+y} \\ y \left (3\right ) &= -1 \\ \end{align*}

1.937

12041

4651

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y \\ \end{align*}

1.938

12042

22801

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\ \end{align*}

1.938

12043

24991

\begin{align*} y^{\prime }-\frac {2 y}{1+t}&=\left (1+t \right )^{2} \\ \end{align*}

1.938

12044

124

\begin{align*} y^{2} y^{\prime }+2 x y^{3}&=6 x \\ \end{align*}

1.939

12045

25703

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= -5 \\ \end{align*}

1.939

12046

25813

\begin{align*} y^{\prime }&=y^{2}-y-6 \\ y \left (0\right ) &= -1 \\ \end{align*}

1.940

12047

2405

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.941

12048

4077

\begin{align*} 2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

1.941

12049

7122

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\ \end{align*}

1.941

12050

18946

\begin{align*} 2 y^{\prime \prime }+y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.941

12051

20321

\begin{align*} x^{2}-a y&=\left (a x -y^{2}\right ) y^{\prime } \\ \end{align*}

1.941

12052

22014

\begin{align*} y^{\prime }&=\frac {x +2 y}{x} \\ \end{align*}

1.941

12053

1221

\begin{align*} y^{\prime }&=3-6 x +y-2 y x \\ \end{align*}

1.942

12054

7015

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\ \end{align*}

1.942

12055

23972

\begin{align*} y^{\prime }-y x&=-x^{5}+4 x^{3} \\ \end{align*}

1.942

12056

7976

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

1.943

12057

16202

\begin{align*} y^{3}-25 y+y^{\prime }&=0 \\ \end{align*}

1.943

12058

22468

\begin{align*} x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.943

12059

16719

\begin{align*} x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\ \end{align*}

1.944

12060

20227

\begin{align*} y^{\prime }&={\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \\ \end{align*}

1.945

12061

22933

\begin{align*} z+x^{\prime }&=x \\ y^{\prime }-2 x&=y+3 t \\ z^{\prime }+4 y&=z-\cos \left (t \right ) \\ \end{align*}

1.946

12062

1552

\begin{align*} y^{\prime }+\frac {y}{x}&=\frac {7}{x^{2}}+3 \\ \end{align*}

1.947

12063

5175

\begin{align*} 3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right )&=0 \\ \end{align*}

1.947

12064

16078

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.947

12065

2309

\begin{align*} y+y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (1\right ) &= 2 \\ \end{align*}

1.948

12066

9645

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.948

12067

22171

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=2\).

1.949

12068

22974

\begin{align*} y^{\prime }&=\frac {x -y+2}{x +1} \\ \end{align*}

1.949

12069

24266

\begin{align*} y^{\prime }&=4 x -2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.949

12070

684

\begin{align*} y^{\prime }&=2 x \sec \left (y\right ) \\ \end{align*}

1.950

12071

10415

\begin{align*} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \\ \end{align*}

1.950

12072

4734

\begin{align*} y^{\prime }&={\mathrm e}^{y}+x \\ \end{align*}

1.951

12073

9369

\begin{align*} y^{\prime }&=x -y \\ y \left (0\right ) &= 0 \\ \end{align*}

1.952

12074

15929

\begin{align*} y^{\prime }&=\frac {y}{t^{2}}+4 \cos \left (t \right ) \\ \end{align*}

1.952

12075

21158

\begin{align*} x^{\prime \prime }+2 t^{3} x&=0 \\ \end{align*}

1.952

12076

6178

\begin{align*} \left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.953

12077

6971

\begin{align*} \tan \left (\theta \right ) r^{\prime }-r&=\tan \left (\theta \right )^{2} \\ \end{align*}

1.953

12078

10273

\begin{align*} c y^{\prime }&=a x +y \\ \end{align*}

1.953

12079

20224

\begin{align*} y^{\prime } x -y-\cos \left (\frac {1}{x}\right )&=0 \\ \end{align*}

1.953

12080

24959

\begin{align*} y^{3} y^{\prime }&=t \\ \end{align*}

1.953

12081

1265

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (0\right ) &= -{\frac {3}{4}} \\ \end{align*}

1.954

12082

19790

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\csc \left (x \right )^{2} \\ \end{align*}

1.954

12083

22467

\begin{align*} x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

1.954

12084

22599

\begin{align*} y^{\prime }&={\mathrm e}^{x +3 y}+1 \\ \end{align*}

1.955

12085

24992

\begin{align*} y^{\prime }-\frac {2 y}{t}&=\frac {1+t}{t} \\ y \left (1\right ) &= -3 \\ \end{align*}

1.955

12086

3586

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.956

12087

7127

\begin{align*} y^{\prime \prime }&=2 k y^{3} \\ \end{align*}

1.956

12088

7495

\begin{align*} \cos \left (x +y\right ) y^{\prime }&=\sin \left (x +y\right ) \\ \end{align*}

1.957

12089

23763

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

1.957

12090

25776

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.957

12091

11813

\begin{align*} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\ \end{align*}

1.959

12092

13929

\begin{align*} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

1.959

12093

24763

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \tan \left (x \right ) \\ \end{align*}

1.959

12094

4257

\begin{align*} 1+y+\left (1-x \right ) y^{\prime }&=0 \\ \end{align*}

1.960

12095

8427

\begin{align*} y^{\prime }&=2 y+x^{2}+5 \\ \end{align*}

1.960

12096

14669

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \\ \end{align*}

1.960

12097

138

\begin{align*} 2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

1.961

12098

14840

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+x&=0 \\ \end{align*}

1.961

12099

15592

\begin{align*} y^{\prime }&=\frac {-y x +1}{x^{2}} \\ \end{align*}

1.961

12100

7324

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

1.962