| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 12001 |
\begin{align*}
x^{\prime }&=x+2 y+{\mathrm e}^{t} \\
y^{\prime }&=x-2 y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.923 |
|
| 12002 |
\begin{align*}
\sin \left (x \right )+y y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.923 |
|
| 12003 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| 12004 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| 12005 |
\begin{align*}
2 {y^{\prime }}^{2}-2 y y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| 12006 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| 12007 |
\begin{align*}
y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.925 |
|
| 12008 |
\begin{align*}
x^{\prime \prime \prime }-3 x^{\prime }+k x&=0 \\
x \left (0\right ) &= 1 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.925 |
|
| 12009 |
\begin{align*}
x \left (1-x \right ) y^{\prime }&=2 y x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.926 |
|
| 12010 |
\begin{align*}
\left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.926 |
|
| 12011 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.927 |
|
| 12012 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.927 |
|
| 12013 |
\begin{align*}
y^{\prime \prime }+y&=x +{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.927 |
|
| 12014 |
\begin{align*}
y^{\prime \prime }+4 \pi ^{2} y&=3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.928 |
|
| 12015 |
\begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.928 |
|
| 12016 |
\begin{align*}
x^{\prime }&=x \left (1-x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.929 |
|
| 12017 |
\begin{align*}
2 y y^{\prime \prime }&=y^{3}+2 {y^{\prime }}^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.930 |
|
| 12018 |
\begin{align*}
y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1}&=x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.930 |
|
| 12019 |
\begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.930 |
|
| 12020 |
\begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+4 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.931 |
|
| 12021 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.931 |
|
| 12022 |
\begin{align*}
x^{\prime }&=\left (a +\frac {b}{t}\right ) x \\
x \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.931 |
|
| 12023 |
\begin{align*}
x^{\prime \prime }+x&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.931 |
|
| 12024 |
\begin{align*}
y \cos \left (t \right )+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| 12025 |
\begin{align*}
y^{\prime } x +y&=\cos \left (x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| 12026 |
\begin{align*}
v v^{\prime }&=g \\
v \left (x_{0} \right ) &= v_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
1.932 |
|
| 12027 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| 12028 |
\begin{align*}
3 y^{\prime } t&=y \cos \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.933 |
|
| 12029 |
\begin{align*}
x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.933 |
|
| 12030 |
\begin{align*}
y&=\left ({\mathrm e}^{y} y-2 x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.933 |
|
| 12031 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.933 |
|
| 12032 |
\begin{align*}
16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| 12033 |
\begin{align*}
6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.934 |
|
| 12034 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime }&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.935 |
|
| 12035 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.935 |
|
| 12036 |
\begin{align*}
y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.935 |
|
| 12037 |
\begin{align*}
y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.937 |
|
| 12038 |
\begin{align*}
\left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| 12039 |
\begin{align*}
x^{\prime \prime }+\lambda x-x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.937 |
|
| 12040 |
\begin{align*}
y^{\prime }&=\frac {x^{2} y-y}{1+y} \\
y \left (3\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| 12041 |
\begin{align*}
y^{\prime }&=f \left (x \right )+g \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| 12042 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.938 |
|
| 12043 |
\begin{align*}
y^{\prime }-\frac {2 y}{1+t}&=\left (1+t \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| 12044 |
\begin{align*}
y^{2} y^{\prime }+2 x y^{3}&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.939 |
|
| 12045 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.939 |
|
| 12046 |
\begin{align*}
y^{\prime }&=y^{2}-y-6 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.940 |
|
| 12047 |
\begin{align*}
3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 12048 |
\begin{align*}
2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.941 |
|
| 12049 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 12050 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 12051 |
\begin{align*}
x^{2}-a y&=\left (a x -y^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.941 |
|
| 12052 |
\begin{align*}
y^{\prime }&=\frac {x +2 y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| 12053 |
\begin{align*}
y^{\prime }&=3-6 x +y-2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.942 |
|
| 12054 |
\begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.942 |
|
| 12055 |
\begin{align*}
y^{\prime }-y x&=-x^{5}+4 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.942 |
|
| 12056 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| 12057 |
\begin{align*}
y^{3}-25 y+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.943 |
|
| 12058 |
\begin{align*}
x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| 12059 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.944 |
|
| 12060 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.945 |
|
| 12061 |
\begin{align*}
z+x^{\prime }&=x \\
y^{\prime }-2 x&=y+3 t \\
z^{\prime }+4 y&=z-\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.946 |
|
| 12062 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {7}{x^{2}}+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 12063 |
\begin{align*}
3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.947 |
|
| 12064 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| 12065 |
\begin{align*}
y+y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| 12066 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| 12067 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 12068 |
\begin{align*}
y^{\prime }&=\frac {x -y+2}{x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 12069 |
\begin{align*}
y^{\prime }&=4 x -2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.949 |
|
| 12070 |
\begin{align*}
y^{\prime }&=2 x \sec \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.950 |
|
| 12071 |
\begin{align*}
y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.950 |
|
| 12072 |
\begin{align*}
y^{\prime }&={\mathrm e}^{y}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.951 |
|
| 12073 |
\begin{align*}
y^{\prime }&=x -y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| 12074 |
\begin{align*}
y^{\prime }&=\frac {y}{t^{2}}+4 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| 12075 |
\begin{align*}
x^{\prime \prime }+2 t^{3} x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.952 |
|
| 12076 |
\begin{align*}
\left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 12077 |
\begin{align*}
\tan \left (\theta \right ) r^{\prime }-r&=\tan \left (\theta \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 12078 |
\begin{align*}
c y^{\prime }&=a x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 12079 |
\begin{align*}
y^{\prime } x -y-\cos \left (\frac {1}{x}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 12080 |
\begin{align*}
y^{3} y^{\prime }&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| 12081 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= {\frac {5}{4}} \\
y^{\prime }\left (0\right ) &= -{\frac {3}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 12082 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\csc \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| 12083 |
\begin{align*}
x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.954 |
|
| 12084 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x +3 y}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| 12085 |
\begin{align*}
y^{\prime }-\frac {2 y}{t}&=\frac {1+t}{t} \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| 12086 |
\begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.956 |
|
| 12087 |
\begin{align*}
y^{\prime \prime }&=2 k y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.956 |
|
| 12088 |
\begin{align*}
\cos \left (x +y\right ) y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 12089 |
\begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.957 |
|
| 12090 |
\begin{align*}
y^{\prime }&=-y x +1 \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| 12091 |
\begin{align*}
{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.959 |
|
| 12092 |
\begin{align*}
y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.959 |
|
| 12093 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.959 |
|
| 12094 |
\begin{align*}
1+y+\left (1-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| 12095 |
\begin{align*}
y^{\prime }&=2 y+x^{2}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| 12096 |
\begin{align*}
y^{\prime \prime \prime \prime }+16 y&=x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| 12097 |
\begin{align*}
2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.961 |
|
| 12098 |
\begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| 12099 |
\begin{align*}
y^{\prime }&=\frac {-y x +1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| 12100 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.962 |
|