| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 12201 |
\begin{align*}
\left (x +1\right ) y^{\prime }+y&=\cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.003 |
|
| 12202 |
\begin{align*}
x^{\prime \prime }+x+8 x^{7}&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.003 |
|
| 12203 |
\begin{align*}
4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.004 |
|
| 12204 |
\begin{align*}
x^{2} y^{\prime }+x \left (2+x \right ) y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.004 |
|
| 12205 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.004 |
|
| 12206 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.004 |
|
| 12207 |
\begin{align*}
y+2 y^{\prime }&=3 t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.005 |
|
| 12208 |
\begin{align*}
x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| 12209 |
\begin{align*}
1&=\left (x +y^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| 12210 |
\begin{align*}
y^{\prime \prime }-\alpha ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| 12211 |
\begin{align*}
y^{\prime \prime } x +\sin \left (x \right ) y&=x \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} Series expansion around \(x=\pi \). |
✓ |
✓ |
✓ |
✗ |
2.006 |
|
| 12212 |
\begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| 12213 |
\begin{align*}
y^{3} y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.007 |
|
| 12214 |
\begin{align*}
\cos \left (y\right ) y^{\prime }&=-\frac {t \sin \left (y\right )}{t^{2}+1} \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.007 |
|
| 12215 |
\begin{align*}
3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 y x -2 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.007 |
|
| 12216 |
\begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.007 |
|
| 12217 |
\begin{align*}
3 y^{2} y^{\prime }-a y^{3}-x -1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.007 |
|
| 12218 |
\begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.007 |
|
| 12219 |
\begin{align*}
x -y+\left (y-x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.008 |
|
| 12220 |
\begin{align*}
x^{2} y^{\prime \prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.008 |
|
| 12221 |
\begin{align*}
y^{2}+\left (y x +y^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.009 |
|
| 12222 |
\begin{align*}
y^{\prime }-3 y&=2 t -{\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.009 |
|
| 12223 |
\begin{align*}
2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.010 |
|
| 12224 |
\begin{align*}
x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.010 |
|
| 12225 |
\begin{align*}
y^{\prime \prime }+4 y&=\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.010 |
|
| 12226 |
\begin{align*}
y^{\prime } x -3 y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.010 |
|
| 12227 |
\begin{align*}
y^{\prime }&=\frac {y+x^{2}}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.010 |
|
| 12228 |
\begin{align*}
y^{\prime }&=-y x +1 \\
y \left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.010 |
|
| 12229 |
\begin{align*}
\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.011 |
|
| 12230 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.011 |
|
| 12231 |
\begin{align*}
x^{\prime \prime }+x&=2 \tan \left (t \right ) \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.011 |
|
| 12232 |
\begin{align*}
y^{\prime }&=x \csc \left (x \right )-\cot \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.012 |
|
| 12233 |
\begin{align*}
y^{\prime }+\csc \left (x \right )+2 \cot \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.012 |
|
| 12234 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| 12235 |
\begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.013 |
|
| 12236 |
\begin{align*}
3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| 12237 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (a x \right ) \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| 12238 |
\begin{align*}
\frac {x+y \,{\mathrm e}^{y}}{x^{\prime }}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.014 |
|
| 12239 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.014 |
|
| 12240 |
\begin{align*}
y^{\prime \prime } x +\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.014 |
|
| 12241 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.014 |
|
| 12242 |
\begin{align*}
y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.015 |
|
| 12243 |
\begin{align*}
1+y-\left (1-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.017 |
|
| 12244 |
\begin{align*}
y^{\prime }&=\frac {y}{x -1}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.017 |
|
| 12245 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.017 |
|
| 12246 |
\begin{align*}
x^{4}-x +y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.018 |
|
| 12247 |
\begin{align*}
y^{\prime }&=y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.019 |
|
| 12248 |
\begin{align*}
y^{\prime \prime } x +x^{5} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.019 |
|
| 12249 |
\begin{align*}
y^{\prime }&=\frac {x}{-y+x^{4}+2 y^{2} x^{2}+y^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.019 |
|
| 12250 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&={\mathrm e}^{-\sin \left (x \right )} \\
y \left (\pi \right ) &= \pi \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.020 |
|
| 12251 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.020 |
|
| 12252 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )+4 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.021 |
|
| 12253 |
\begin{align*}
4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.021 |
|
| 12254 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.021 |
|
| 12255 |
\begin{align*}
y^{\prime }-\frac {2 t y}{t^{2}+1}&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.021 |
|
| 12256 |
\begin{align*}
\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.022 |
|
| 12257 |
\begin{align*}
x^{\prime }&=2 x-5 y+4 \\
y^{\prime }&=3 x-7 y+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.022 |
|
| 12258 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| 12259 |
\begin{align*}
3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.025 |
|
| 12260 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.025 |
|
| 12261 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.025 |
|
| 12262 |
\begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.025 |
|
| 12263 |
\begin{align*}
x_{1}^{\prime }&=9 x_{1}-7 x_{2}-5 x_{3} \\
x_{2}^{\prime }&=-12 x_{1}+7 x_{2}+11 x_{3}+9 x_{4} \\
x_{3}^{\prime }&=24 x_{1}-17 x_{2}-19 x_{3}-9 x_{4} \\
x_{4}^{\prime }&=-18 x_{1}+13 x_{2}+17 x_{3}+9 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12264 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+a -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12265 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime }&=a -x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12266 |
\begin{align*}
c y^{\prime }+\left (b x +a \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12267 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12268 |
\begin{align*}
y^{\prime } x +y&={\mathrm e}^{x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12269 |
\begin{align*}
2 y x +1+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.026 |
|
| 12270 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12271 |
\begin{align*}
\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12272 |
\begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12273 |
\begin{align*}
y^{\prime \prime }+y&=x \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| 12274 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.027 |
|
| 12275 |
\begin{align*}
y^{\prime }-a y&=f \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.027 |
|
| 12276 |
\begin{align*}
\frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12277 |
\begin{align*}
y^{\prime }+2 y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12278 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12279 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\
y \left (1\right ) &= -{\frac {1}{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.028 |
|
| 12280 |
\begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12281 |
\begin{align*}
2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12282 |
\begin{align*}
-2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| 12283 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.029 |
|
| 12284 |
\begin{align*}
\theta ^{\prime \prime }+4 \theta &=15 \cos \left (3 t \right ) \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.029 |
|
| 12285 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.030 |
|
| 12286 |
\begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.030 |
|
| 12287 |
\begin{align*}
e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.030 |
|
| 12288 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.030 |
|
| 12289 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.031 |
|
| 12290 |
\begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.032 |
|
| 12291 |
\begin{align*}
e^{\prime }&=-\frac {e}{r c} \\
e \left (4\right ) &= e_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.032 |
|
| 12292 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&={\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.032 |
|
| 12293 |
\begin{align*}
y x +x^{2} y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.033 |
|
| 12294 |
\begin{align*}
y^{\prime } x +y&=x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.033 |
|
| 12295 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}-1}{3+2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.034 |
|
| 12296 |
\begin{align*}
y^{\prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.034 |
|
| 12297 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.034 |
|
| 12298 |
\begin{align*}
y^{\prime }&=3 \left (y+7\right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.035 |
|
| 12299 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {2}{x^{2}}+1 \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.035 |
|
| 12300 |
\begin{align*}
x^{3} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.035 |
|