2.3.135 Problems 13401 to 13500

Table 2.801: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13401

21357

\begin{align*} {\mathrm e}^{x}-y y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.457

13402

25712

\begin{align*} \left (y^{3}+1\right ) y^{\prime }&=x^{2} \\ \end{align*}

2.457

13403

18337

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {1}{x^{2}+1} \\ y \left (\infty \right ) &= \frac {\pi ^{2}}{8} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.458

13404

3539

\begin{align*} 1-\sin \left (x \right ) y-\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.459

13405

12909

\begin{align*} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\ \end{align*}

2.459

13406

16340

\begin{align*} x y^{2}-6+x^{2} y y^{\prime }&=0 \\ \end{align*}

2.459

13407

22046

\begin{align*} y+y^{2} x^{4}+y^{\prime } x&=0 \\ \end{align*}

2.459

13408

4768

\begin{align*} y^{\prime } x +\left (b x +a \right ) y&=0 \\ \end{align*}

2.460

13409

10082

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x&=0 \\ \end{align*}

2.460

13410

13676

\begin{align*} y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y&=0 \\ \end{align*}

2.460

13411

18538

\begin{align*} \frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.460

13412

5036

\begin{align*} y y^{\prime }+x \,{\mathrm e}^{x^{2}}&=0 \\ \end{align*}

2.461

13413

12252

\begin{align*} y^{\prime }&=\frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{-x^{2}+y} \\ \end{align*}

2.461

13414

25501

\begin{align*} y^{\prime }&={\mathrm e}^{t} y \\ \end{align*}

2.461

13415

4615

\begin{align*} y^{\prime }&=x \left (x^{2}-y\right ) \\ \end{align*}

2.462

13416

4839

\begin{align*} \left (x +1\right ) y^{\prime }&=\left (1-x y^{3}\right ) y \\ \end{align*}

2.463

13417

10315

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\ \end{align*}

2.463

13418

16696

\begin{align*} x^{2} y^{\prime \prime }-2 y&=\frac {1}{x -2} \\ \end{align*}

2.463

13419

18925

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.463

13420

20543

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

2.463

13421

5841

\begin{align*} -a \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.465

13422

3633

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 \cos \left (x \right ) \\ \end{align*}

2.466

13423

17195

\begin{align*} y+y^{\prime }&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.466

13424

1499

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.467

13425

4337

\begin{align*} x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

2.467

13426

6760

\begin{align*} 2 y a^{2} b^{2}+2 \left (a^{2}+b^{2}\right ) y^{\prime \prime }+2 y^{\prime \prime \prime \prime }&=\cos \left (a x \right )+\cos \left (b x \right ) \\ \end{align*}

2.468

13427

21342

\begin{align*} y^{\prime }&=\frac {2 y}{x} \\ \end{align*}

2.468

13428

24907

\begin{align*} 4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\ \end{align*}

2.468

13429

25459

\begin{align*} y^{\prime }&=y-{\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.468

13430

762

\begin{align*} 2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.470

13431

12694

\begin{align*} y^{\prime \prime }&=\frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \\ \end{align*}

2.470

13432

21045

\begin{align*} x^{\prime }&={\mathrm e}^{x}-t \\ \end{align*}

2.470

13433

5521

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=b^{2} \\ \end{align*}

2.471

13434

2306

\begin{align*} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\ \end{align*}

2.472

13435

4619

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )+\cos \left (x \right ) y \\ \end{align*}

2.472

13436

11305

\begin{align*} y^{\prime }+a y-b \sin \left (c x \right )&=0 \\ \end{align*}

2.472

13437

2976

\begin{align*} y^{\prime }+\cot \left (x \right ) y-\sec \left (x \right )&=0 \\ \end{align*}

2.473

13438

43

\begin{align*} y^{\prime }&=\sin \left (x \right ) y \\ \end{align*}

2.474

13439

7731

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=y^{3} \sec \left (x \right )^{4} \\ \end{align*}

2.474

13440

3317

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

2.475

13441

7703

\begin{align*} y^{\prime }+y \tanh \left (x \right )&=2 \sinh \left (x \right ) \\ \end{align*}

2.475

13442

12418

\begin{align*} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y&=0 \\ \end{align*}

2.475

13443

12653

\begin{align*} y^{\prime \prime }&=-\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

2.475

13444

18928

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.476

13445

19406

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }+2 y&=\left (x^{2}+1\right )^{3} \\ \end{align*}

2.476

13446

4292

\begin{align*} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=2 y x -{\mathrm e}^{y}-x \\ \end{align*}

2.479

13447

16226

\begin{align*} y y^{\prime }&=x y^{2}+x \\ y \left (0\right ) &= -2 \\ \end{align*}

2.479

13448

14031

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

2.480

13449

19675

\begin{align*} x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t}&=2 t \\ \end{align*}

2.480

13450

21007

\begin{align*} x^{\prime }&=k x \\ x \left (0\right ) &= 1 \\ \end{align*}

2.481

13451

21260

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ x \left (0\right ) &= \frac {\sqrt {2}}{2} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.481

13452

9094

\begin{align*} \frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\ y \left (1\right ) &= 3 \\ \end{align*}

2.482

13453

7222

\begin{align*} y^{\prime }&=\frac {2 x y^{2}+x}{x^{2} y-y} \\ y \left (\sqrt {2}\right ) &= 0 \\ \end{align*}

2.483

13454

8348

\begin{align*} \csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

2.483

13455

10228

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y x&=0 \\ \end{align*}

2.483

13456

22661

\begin{align*} u^{\prime \prime }+16 u&=0 \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 4 \\ \end{align*}

2.483

13457

4225

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.484

13458

4638

\begin{align*} y^{\prime }&=\tan \left (x \right ) y \\ \end{align*}

2.484

13459

19330

\begin{align*} y^{\prime } x&=y+x^{2}+9 y^{2} \\ \end{align*}

2.484

13460

20275

\begin{align*} y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}&=1 \\ \end{align*}

2.484

13461

21432

\begin{align*} y^{\prime }+q \left (x \right ) y&=0 \\ y \left (\textit {x\_0} \right ) &= y_{0} \\ \end{align*}

2.485

13462

705

\begin{align*} y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.486

13463

7680

\begin{align*} y^{\prime }+\frac {y}{1-x}+x -x^{2}&=0 \\ \end{align*}

2.486

13464

24942

\begin{align*} y^{\prime }&=t y^{2} \\ \end{align*}

2.486

13465

309

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+3 y&=0 \\ \end{align*}

2.487

13466

5668

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\ \end{align*}

2.487

13467

14929

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.487

13468

20302

\begin{align*} y \ln \left (y\right )+y^{\prime } x&=y x \,{\mathrm e}^{x} \\ \end{align*}

2.487

13469

4865

\begin{align*} x^{2} y^{\prime }&=a +b x +c \,x^{2}+y x \\ \end{align*}

2.488

13470

22454

\begin{align*} y^{\prime }&=\frac {1}{x -3 y} \\ \end{align*}

2.489

13471

217

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

2.490

13472

4866

\begin{align*} x^{2} y^{\prime }&=a +b x +c \,x^{2}-y x \\ \end{align*}

2.490

13473

14890

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-t^{2}} \\ \end{align*}

2.490

13474

19015

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+6 x_{2}+2 x_{3}-2 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2}-6 x_{3}+2 x_{4} \\ x_{3}^{\prime }&=-4 x_{1}+8 x_{2}+3 x_{3}-4 x_{4} \\ x_{4}^{\prime }&=2 x_{1}-2 x_{2}-6 x_{3}+x_{4} \\ \end{align*}

2.490

13475

23159

\begin{align*} y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2}&=0 \\ \end{align*}

2.490

13476

16230

\begin{align*} y y^{\prime }&=x y^{2}-9 x \\ \end{align*}

2.491

13477

20734

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

2.491

13478

7389

\begin{align*} y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\ \end{align*}

2.493

13479

16095

\begin{align*} y^{\prime \prime }+2 y&=-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.493

13480

21564

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=2 \\ \end{align*}

2.493

13481

22955

\begin{align*} x \cos \left (y\right ) y^{\prime }-\left (x^{2}+1\right ) \sin \left (y\right )&=0 \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.493

13482

17807

\begin{align*} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.494

13483

22564

\begin{align*} s^{\prime }&=\frac {1}{s+t +1} \\ \end{align*}

2.494

13484

3054

\begin{align*} 2 y x -2 y+1+x \left (x -1\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 2 \\ \end{align*}

2.496

13485

2490

\begin{align*} y^{\prime }&=1-t +y^{2}-t y^{2} \\ \end{align*}

2.497

13486

12501

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

2.497

13487

15611

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= -1 \\ \end{align*}

2.497

13488

10330

\begin{align*} 2 x^{\prime }+y^{\prime }-x&=y+t \\ x^{\prime }+y^{\prime }&=2 x+3 y+{\mathrm e}^{t} \\ \end{align*}

2.498

13489

11821

\begin{align*} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y&=0 \\ \end{align*}

2.498

13490

11948

\begin{align*} y^{\prime }&=-\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

2.498

13491

18392

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y&=0 \\ \end{align*}

2.499

13492

25222

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y&=0 \\ \end{align*}

2.499

13493

7463

\begin{align*} 2 x +\frac {y}{1+y^{2} x^{2}}+\left (\frac {x}{1+y^{2} x^{2}}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.500

13494

13932

\begin{align*} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.500

13495

15044

\begin{align*} y \left (x -y\right )-x^{2} y^{\prime }&=0 \\ \end{align*}

2.500

13496

18510

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{-2 t}+t \\ \end{align*}

2.500

13497

20426

\begin{align*} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2}&=x^{2} \\ \end{align*}

2.500

13498

23087

\begin{align*} y^{\prime \prime }-4 y&=12 \\ \end{align*}

2.500

13499

6322

\begin{align*} y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

2.501

13500

22379

\begin{align*} y^{\prime }&=1+\frac {y}{x} \\ \end{align*}

2.502