2.3.134 Problems 13301 to 13400

Table 2.799: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13301

14007

\begin{align*} \left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x&=0 \\ \end{align*}

2.418

13302

18527

\begin{align*} 2 y+y^{\prime } t&=\sin \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= 3 \\ \end{align*}

2.418

13303

12316

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y&=0 \\ \end{align*}

2.419

13304

5310

\begin{align*} x \left (x +y+2 y^{3}\right ) y^{\prime }&=y \left (x -y\right ) \\ \end{align*}

2.420

13305

1103

\begin{align*} 2 y+y^{\prime } t&=\sin \left (t \right ) \\ \end{align*}

2.421

13306

8544

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.421

13307

12165

\begin{align*} y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 y^{2} x^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 y^{2} x^{4}+x^{6}\right )}{128 y} \\ \end{align*}

2.421

13308

15368

\begin{align*} s^{\prime }+s \cos \left (t \right )&=\frac {\sin \left (2 t \right )}{2} \\ \end{align*}

2.421

13309

19491

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\ \end{align*}

2.421

13310

17141

\begin{align*} -y+y^{\prime }&=t^{2}-2 t \\ \end{align*}

2.422

13311

6293

\begin{align*} a^{2} x^{-1+a} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{1+a} y^{\prime \prime }&=0 \\ \end{align*}

2.423

13312

22308

\begin{align*} y^{\prime \prime }&=12 x \left (4-x \right ) \\ y \left (0\right ) &= 7 \\ y \left (1\right ) &= 0 \\ \end{align*}

2.423

13313

4360

\begin{align*} 1-\left (y-2 y x \right ) y^{\prime }&=0 \\ \end{align*}

2.424

13314

4742

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \\ \end{align*}

2.424

13315

4759

\begin{align*} y^{\prime } x&=\sin \left (x \right )-2 y \\ \end{align*}

2.424

13316

13723

\begin{align*} b y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.424

13317

14230

\begin{align*} x^{\prime }&={\mathrm e}^{t +x} \\ x \left (0\right ) &= 0 \\ \end{align*}

2.424

13318

14460

\begin{align*} \csc \left (y\right )+\sec \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.424

13319

14484

\begin{align*} y^{\prime }+4 y x&=8 x \\ \end{align*}

2.424

13320

12376

\begin{align*} y^{\prime \prime } x -y^{\prime } x -a y&=0 \\ \end{align*}

2.425

13321

16590

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{5 x} \\ y \left (0\right ) &= 12 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

2.425

13322

20633

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}

2.425

13323

7477

\begin{align*} x^{2} \sin \left (x \right )+4 y+y^{\prime } x&=0 \\ \end{align*}

2.426

13324

22952

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.426

13325

10122

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\ \end{align*}

2.427

13326

19991

\begin{align*} y^{\prime }+2 y x&=x^{2}+y^{2} \\ \end{align*}

2.427

13327

20951

\begin{align*} y^{\prime }&=y \left (y-2\right ) \left (3+y\right ) \\ \end{align*}

2.427

13328

45

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

2.428

13329

15962

\begin{align*} y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.428

13330

786

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

2.429

13331

23908

\begin{align*} y^{\prime }-\frac {2 y}{x}&=-x^{2}+1 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.429

13332

4411

\begin{align*} y x +2 x^{3} y+x^{2} y^{\prime }&=0 \\ \end{align*}

2.430

13333

670

\begin{align*} y^{\prime }&=\ln \left (y\right ) x \\ \end{align*}

2.431

13334

5842

\begin{align*} b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.431

13335

12360

\begin{align*} y^{\prime \prime } x +y^{\prime }+a y&=0 \\ \end{align*}

2.431

13336

13678

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

2.431

13337

15580

\begin{align*} y^{\prime }&=3 y \\ y \left (0\right ) &= -1 \\ \end{align*}

2.431

13338

4911

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\tan \left (x \right )-2 y x \\ \end{align*}

2.432

13339

7383

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\ \end{align*}

2.432

13340

19129

\begin{align*} y^{\prime }&=\sqrt {y} \\ \end{align*}

2.432

13341

14005

\begin{align*} -y+y^{\prime } x&=x^{2}+y^{2} \\ \end{align*}

2.433

13342

16482

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.434

13343

2439

\begin{align*} t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

2.435

13344

22378

\begin{align*} x^{2}+y \sin \left (y x \right )+x \sin \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

2.435

13345

25398

\begin{align*} y^{\prime }&=a \left (t \right ) y \\ \end{align*}

2.435

13346

2962

\begin{align*} y x^{\prime }+\left (1+y \right ) x&={\mathrm e}^{y} \\ \end{align*}

2.437

13347

5311

\begin{align*} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \\ \end{align*}

2.437

13348

22363

\begin{align*} y^{\prime }&=\frac {x y^{2}+x}{4 y} \\ y \left (1\right ) &= 0 \\ \end{align*}

2.437

13349

8466

\begin{align*} 2 x^{2} y+x^{3} y^{\prime }&=10 \sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.438

13350

20220

\begin{align*} x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}}&=0 \\ \end{align*}

2.438

13351

23146

\begin{align*} y^{4}+\left (x^{2}-3 y\right ) y^{\prime }&=0 \\ \end{align*}

2.438

13352

17142

\begin{align*} -y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\ \end{align*}

2.439

13353

197

\begin{align*} 3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\ \end{align*}

2.440

13354

22714

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) {\mathrm e}^{-x}+2 x \\ \end{align*}

2.440

13355

717

\begin{align*} y^{\prime } x -3 y&=x^{3} \\ y \left (1\right ) &= 10 \\ \end{align*}

2.441

13356

5519

\begin{align*} \left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}&=b^{2} \\ \end{align*}

2.441

13357

19412

\begin{align*} x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\ \end{align*}

2.441

13358

23901

\begin{align*} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.441

13359

2580

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

2.442

13360

1587

\begin{align*} y^{\prime }&=\frac {x^{2}+3 x +2}{y-2} \\ y \left (1\right ) &= 4 \\ \end{align*}

2.443

13361

3142

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-3 y&=\sin \left (x \right )-8 x \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

2.443

13362

7304

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

2.443

13363

364

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\ \end{align*}

2.444

13364

3453

\begin{align*} t \ln \left (t \right ) y^{\prime }&=t \ln \left (t \right )-y \\ y \left ({\mathrm e}\right ) &= 1 \\ \end{align*}

2.444

13365

6155

\begin{align*} \left (4 a^{2} x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

2.444

13366

8430

\begin{align*} 4 y+y^{\prime } x&=x^{3}-x \\ \end{align*}

2.444

13367

9327

\begin{align*} y^{\prime \prime }-y&=\cos \left (x \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

2.444

13368

11749

\begin{align*} y {y^{\prime }}^{2}-1&=0 \\ \end{align*}

2.444

13369

20560

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x \\ \end{align*}

2.444

13370

21338

\begin{align*} y^{\prime } x -2 y&=0 \\ \end{align*}

2.444

13371

25430

\begin{align*} y^{\prime }-a \left (t \right ) y&=0 \\ \end{align*}

2.444

13372

4622

\begin{align*} y^{\prime }&={\mathrm e}^{-\sin \left (x \right )}+\cos \left (x \right ) y \\ \end{align*}

2.446

13373

4758

\begin{align*} y^{\prime } x&=x^{n} \ln \left (x \right )-y \\ \end{align*}

2.446

13374

1330

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

2.447

13375

4817

\begin{align*} y^{\prime } x +y+2 x \sec \left (y x \right )&=0 \\ \end{align*}

2.447

13376

15535

\begin{align*} y^{\prime }&=y x \\ \end{align*}

2.447

13377

19285

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

2.447

13378

8672

\begin{align*} x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.448

13379

23269

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

2.448

13380

3970

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.449

13381

257

\begin{align*} y^{\prime \prime }+y&=3 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

2.450

13382

9498

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

2.450

13383

16439

\begin{align*} y^{\prime } x +3 y&={\mathrm e}^{2 x} \\ \end{align*}

2.450

13384

18587

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{2 x}+y \\ \end{align*}

2.450

13385

12707

\begin{align*} y^{\prime \prime }&=-\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \\ \end{align*}

2.451

13386

24830

\begin{align*} x {y^{\prime }}^{2}+y y^{\prime }&=3 y^{4} \\ \end{align*}

2.451

13387

3981

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

2.452

13388

16436

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\ \end{align*}

2.452

13389

15483

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

2.453

13390

15530

\begin{align*} y^{\prime }&=y x \\ \end{align*}

2.453

13391

21326

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

2.453

13392

161

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y \ln \left (y\right ) \\ \end{align*}

2.454

13393

20747

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

2.454

13394

20614

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

2.455

13395

22091

\begin{align*} y^{\prime }-\frac {2 y}{x}&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

2.455

13396

6458

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\ \end{align*}

2.456

13397

16387

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

2.456

13398

15397

\begin{align*} y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\ \end{align*}

2.457

13399

15852

\begin{align*} y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.457

13400

16097

\begin{align*} y^{\prime \prime }+9 y&=6 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.457