| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13301 |
\begin{align*}
\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| 13302 |
\begin{align*}
2 y+y^{\prime } t&=\sin \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| 13303 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.419 |
|
| 13304 |
\begin{align*}
x \left (x +y+2 y^{3}\right ) y^{\prime }&=y \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.420 |
|
| 13305 |
\begin{align*}
2 y+y^{\prime } t&=\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.421 |
|
| 13306 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.421 |
|
| 13307 |
\begin{align*}
y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 y^{2} x^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 y^{2} x^{4}+x^{6}\right )}{128 y} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.421 |
|
| 13308 |
\begin{align*}
s^{\prime }+s \cos \left (t \right )&=\frac {\sin \left (2 t \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.421 |
|
| 13309 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.421 |
|
| 13310 |
\begin{align*}
-y+y^{\prime }&=t^{2}-2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.422 |
|
| 13311 |
\begin{align*}
a^{2} x^{-1+a} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{1+a} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.423 |
|
| 13312 |
\begin{align*}
y^{\prime \prime }&=12 x \left (4-x \right ) \\
y \left (0\right ) &= 7 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.423 |
|
| 13313 |
\begin{align*}
1-\left (y-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13314 |
\begin{align*}
y^{\prime }&=\sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13315 |
\begin{align*}
y^{\prime } x&=\sin \left (x \right )-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13316 |
\begin{align*}
b y+a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.424 |
|
| 13317 |
\begin{align*}
x^{\prime }&={\mathrm e}^{t +x} \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13318 |
\begin{align*}
\csc \left (y\right )+\sec \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13319 |
\begin{align*}
y^{\prime }+4 y x&=8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.424 |
|
| 13320 |
\begin{align*}
y^{\prime \prime } x -y^{\prime } x -a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.425 |
|
| 13321 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{5 x} \\
y \left (0\right ) &= 12 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.425 |
|
| 13322 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.425 |
|
| 13323 |
\begin{align*}
x^{2} \sin \left (x \right )+4 y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.426 |
|
| 13324 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=1-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.426 |
|
| 13325 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.427 |
|
| 13326 |
\begin{align*}
y^{\prime }+2 y x&=x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.427 |
|
| 13327 |
\begin{align*}
y^{\prime }&=y \left (y-2\right ) \left (3+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.427 |
|
| 13328 |
\begin{align*}
2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.428 |
|
| 13329 |
\begin{align*}
y^{\prime }&=1-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.428 |
|
| 13330 |
\begin{align*}
y^{\prime }&=x^{2}-2 y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.429 |
|
| 13331 |
\begin{align*}
y^{\prime }-\frac {2 y}{x}&=-x^{2}+1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.429 |
|
| 13332 |
\begin{align*}
y x +2 x^{3} y+x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.430 |
|
| 13333 |
\begin{align*}
y^{\prime }&=\ln \left (y\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.431 |
|
| 13334 |
\begin{align*}
b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.431 |
|
| 13335 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.431 |
|
| 13336 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.431 |
|
| 13337 |
\begin{align*}
y^{\prime }&=3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.431 |
|
| 13338 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\tan \left (x \right )-2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.432 |
|
| 13339 |
\begin{align*}
y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.432 |
|
| 13340 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.432 |
|
| 13341 |
\begin{align*}
-y+y^{\prime } x&=x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.433 |
|
| 13342 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| 13343 |
\begin{align*}
t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.435 |
|
| 13344 |
\begin{align*}
x^{2}+y \sin \left (y x \right )+x \sin \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.435 |
|
| 13345 |
\begin{align*}
y^{\prime }&=a \left (t \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.435 |
|
| 13346 |
\begin{align*}
y x^{\prime }+\left (1+y \right ) x&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.437 |
|
| 13347 |
\begin{align*}
\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.437 |
|
| 13348 |
\begin{align*}
y^{\prime }&=\frac {x y^{2}+x}{4 y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.437 |
|
| 13349 |
\begin{align*}
2 x^{2} y+x^{3} y^{\prime }&=10 \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.438 |
|
| 13350 |
\begin{align*}
x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.438 |
|
| 13351 |
\begin{align*}
y^{4}+\left (x^{2}-3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.438 |
|
| 13352 |
\begin{align*}
-y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| 13353 |
\begin{align*}
3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.440 |
|
| 13354 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) {\mathrm e}^{-x}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.440 |
|
| 13355 |
\begin{align*}
y^{\prime } x -3 y&=x^{3} \\
y \left (1\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 13356 |
\begin{align*}
\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}&=b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 13357 |
\begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| 13358 |
\begin{align*}
x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.441 |
|
| 13359 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.442 |
|
| 13360 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+3 x +2}{y-2} \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.443 |
|
| 13361 |
\begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-3 y&=\sin \left (x \right )-8 x \\
y \left (0\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.443 |
|
| 13362 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.443 |
|
| 13363 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13364 |
\begin{align*}
t \ln \left (t \right ) y^{\prime }&=t \ln \left (t \right )-y \\
y \left ({\mathrm e}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13365 |
\begin{align*}
\left (4 a^{2} x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13366 |
\begin{align*}
4 y+y^{\prime } x&=x^{3}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13367 |
\begin{align*}
y^{\prime \prime }-y&=\cos \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13368 |
\begin{align*}
y {y^{\prime }}^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13369 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13370 |
\begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13371 |
\begin{align*}
y^{\prime }-a \left (t \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| 13372 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-\sin \left (x \right )}+\cos \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.446 |
|
| 13373 |
\begin{align*}
y^{\prime } x&=x^{n} \ln \left (x \right )-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.446 |
|
| 13374 |
\begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 13375 |
\begin{align*}
y^{\prime } x +y+2 x \sec \left (y x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.447 |
|
| 13376 |
\begin{align*}
y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 13377 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.447 |
|
| 13378 |
\begin{align*}
x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.448 |
|
| 13379 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.448 |
|
| 13380 |
\begin{align*}
-y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
2.449 |
|
| 13381 |
\begin{align*}
y^{\prime \prime }+y&=3 x \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 13382 |
\begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 13383 |
\begin{align*}
y^{\prime } x +3 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 13384 |
\begin{align*}
y^{\prime }&=-1+{\mathrm e}^{2 x}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| 13385 |
\begin{align*}
y^{\prime \prime }&=-\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 13386 |
\begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }&=3 y^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| 13387 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.452 |
|
| 13388 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.452 |
|
| 13389 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.453 |
|
| 13390 |
\begin{align*}
y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.453 |
|
| 13391 |
\begin{align*}
-x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.453 |
|
| 13392 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.454 |
|
| 13393 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.454 |
|
| 13394 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.455 |
|
| 13395 |
\begin{align*}
y^{\prime }-\frac {2 y}{x}&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.455 |
|
| 13396 |
\begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.456 |
|
| 13397 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.456 |
|
| 13398 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.457 |
|
| 13399 |
\begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.457 |
|
| 13400 |
\begin{align*}
y^{\prime \prime }+9 y&=6 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.457 |
|