2.3.138 Problems 13701 to 13800

Table 2.807: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13701

17140

\begin{align*} -y+y^{\prime }&=2 \cos \left (t \right ) \\ \end{align*}

2.571

13702

25474

\begin{align*} y^{\prime }&=a y-b y^{n} \\ \end{align*}

2.571

13703

17185

\begin{align*} y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

2.572

13704

376

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

2.573

13705

13872

\begin{align*} x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

2.573

13706

14502

\begin{align*} 2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime }&=0 \\ y \left (1\right ) &= -5 \\ \end{align*}

2.573

13707

22612

\begin{align*} y^{\prime }&=\frac {y^{2}}{x -1}-\frac {x y}{x -1}+1 \\ \end{align*}

2.574

13708

3531

\begin{align*} y^{\prime }+2 y x&=2 x^{3} \\ \end{align*}

2.575

13709

22469

\begin{align*} x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.575

13710

3537

\begin{align*} t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\ \end{align*}

2.576

13711

3565

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

2.576

13712

16086

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.576

13713

78

\begin{align*} y^{\prime } x +5 y&=7 x^{2} \\ y \left (2\right ) &= 5 \\ \end{align*}

2.577

13714

7538

\begin{align*} y^{\prime }&=2-\sqrt {2 x -y+3} \\ \end{align*}

2.577

13715

15931

\begin{align*} y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\ \end{align*}

2.577

13716

25196

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

2.577

13717

25614

\begin{align*} y^{\prime }-a y&={\mathrm e}^{i \omega t} \\ \end{align*}

2.578

13718

228

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (2\right ) &= 10 \\ y^{\prime }\left (2\right ) &= 15 \\ \end{align*}

2.579

13719

685

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=2 y \\ \end{align*}

2.579

13720

17836

\begin{align*} x^{\prime \prime }+x&={\mathrm e}^{t} \\ \end{align*}

2.579

13721

23157

\begin{align*} y^{\prime }-\frac {3 y}{x -1}&=\left (x -1\right )^{4} \\ \end{align*}

2.579

13722

7162

\begin{align*} \cos \left (y\right ) \sin \left (x \right )&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\ \end{align*}

2.580

13723

24237

\begin{align*} y^{\prime }&=\csc \left (x \right )-\cot \left (x \right ) y \\ \end{align*}

2.580

13724

25595

\begin{align*} y^{\prime \prime }+3 y&=\cos \left (t \right ) \\ \end{align*}

2.581

13725

3530

\begin{align*} x^{2} y^{\prime }-4 y x&=x^{7} \sin \left (x \right ) \\ \end{align*}

2.582

13726

15401

\begin{align*} y^{\prime \prime }&=a^{2} y \\ \end{align*}

2.582

13727

21373

\begin{align*} x \sin \left (y\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.582

13728

12966

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

2.583

13729

15156

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.583

13730

16318

\begin{align*} 1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime }&=0 \\ \end{align*}

2.583

13731

15884

\begin{align*} w^{\prime }&=\left (w^{2}-2\right ) \arctan \left (w\right ) \\ \end{align*}

2.584

13732

19346

\begin{align*} y-x +x y \cot \left (x \right )+y^{\prime } x&=0 \\ \end{align*}

2.584

13733

25568

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.585

13734

3698

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

2.586

13735

4674

\begin{align*} y^{\prime }&=1+a \left (x -y\right ) y \\ \end{align*}

2.586

13736

15545

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\ \end{align*}

2.586

13737

23021

\begin{align*} 9 y^{\prime \prime }+49 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.586

13738

19085

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

2.587

13739

23013

\begin{align*} y^{\prime \prime }-3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.587

13740

570

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=\delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

2.588

13741

7043

\begin{align*} 6 y^{\prime \prime }-11 y^{\prime }+4 y&=0 \\ \end{align*}

2.588

13742

16994

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

2.588

13743

80

\begin{align*} y+3 y^{\prime } x&=12 x \\ \end{align*}

2.589

13744

3140

\begin{align*} 2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.589

13745

10408

\begin{align*} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime }&=0 \\ \end{align*}

2.590

13746

24585

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{3 x} \\ \end{align*}

2.590

13747

25490

\begin{align*} y^{\prime }&=a \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.591

13748

3983

\begin{align*} y^{\prime \prime }+16 y&=4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.592

13749

8389

\begin{align*} y^{\prime }&=y-y^{3} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

2.592

13750

19726

\begin{align*} p^{\prime }&=\frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \\ \end{align*}

2.592

13751

4720

\begin{align*} y^{\prime }&=\cot \left (x \right ) \cot \left (y\right ) \\ \end{align*}

2.593

13752

13301

\begin{align*} y^{\prime }&=y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \\ \end{align*}

2.594

13753

259

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

2.595

13754

13725

\begin{align*} y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

2.595

13755

833

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

2.596

13756

7050

\begin{align*} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y&=0 \\ \end{align*}

2.596

13757

8234

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (2\right ) &= -3 \\ \end{align*}

2.596

13758

20293

\begin{align*} \left (20 x^{2}+8 y x +4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+y x +y^{2}+y^{3}\right ) x y^{\prime }&=0 \\ \end{align*}

2.596

13759

1584

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y x&=0 \\ \end{align*}

2.597

13760

12032

\begin{align*} y^{\prime }&=\frac {\left (x^{2}+3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x} \\ \end{align*}

2.597

13761

2321

\begin{align*} \cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\ \end{align*}

2.598

13762

10945

\begin{align*} y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\ \end{align*}

2.598

13763

22977

\begin{align*} y^{\prime }+2 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

2.598

13764

8302

\begin{align*} y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

2.599

13765

9084

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

2.600

13766

20469

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

2.600

13767

19728

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

2.602

13768

25193

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ \end{align*}

2.602

13769

238

\begin{align*} 2 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

2.603

13770

5450

\begin{align*} x {y^{\prime }}^{2}+x -2 y&=0 \\ \end{align*}

2.605

13771

5459

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }+a x&=0 \\ \end{align*}

2.605

13772

21375

\begin{align*} y^{\prime }&=-\frac {{\mathrm e}^{y}}{x \,{\mathrm e}^{y}+2 y} \\ \end{align*}

2.605

13773

22137

\begin{align*} y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\ \end{align*}

2.605

13774

20618

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

2.606

13775

11309

\begin{align*} y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{-\sin \left (x \right )}&=0 \\ \end{align*}

2.607

13776

15968

\begin{align*} y^{\prime }&=\frac {2 y+1}{t} \\ \end{align*}

2.607

13777

16470

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}

2.607

13778

5487

\begin{align*} 4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\ \end{align*}

2.608

13779

6238

\begin{align*} -\left (2 x^{2}+1\right ) y+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

2.608

13780

12607

\begin{align*} y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\ \end{align*}

2.608

13781

7904

\begin{align*} 2 y-3 x y^{2}-y^{\prime } x&=0 \\ \end{align*}

2.609

13782

11661

\begin{align*} {y^{\prime }}^{2}+y^{2}-a^{2}&=0 \\ \end{align*}

2.609

13783

21402

\begin{align*} 1+3 x \sin \left (y\right )-x^{2} y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

2.610

13784

17178

\begin{align*} y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\ \end{align*}

2.611

13785

8106

\begin{align*} -y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.612

13786

8757

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y&=0 \\ \end{align*}

2.612

13787

16206

\begin{align*} y^{\prime }+\left (8-x \right ) y-y^{2}&=-8 x \\ \end{align*}

2.612

13788

18192

\begin{align*} y^{\prime \prime }+8 y^{\prime }&=8 x \\ \end{align*}

2.612

13789

5583

\begin{align*} \left (a^{2} x^{2}-y^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +x^{2} \left (a^{2}-1\right )&=0 \\ \end{align*}

2.613

13790

13882

\begin{align*} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y&=0 \\ \end{align*}

2.613

13791

7434

\begin{align*} y^{\prime }-\frac {y}{x}&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= {\mathrm e}-1 \\ \end{align*}

2.614

13792

183

\begin{align*} 3 y+x^{4} y^{\prime }&=2 y x \\ \end{align*}

2.615

13793

8441

\begin{align*} p^{\prime }+2 t p&=p+4 t -2 \\ \end{align*}

2.615

13794

12368

\begin{align*} a \,x^{2} y+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.615

13795

19332

\begin{align*} -y+y^{\prime } x&=2 x^{2}-3 \\ \end{align*}

2.615

13796

19849

\begin{align*} e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\ \end{align*}

2.615

13797

19858

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=2 x \\ \end{align*}

2.615

13798

134

\begin{align*} \left ({\mathrm e}^{y}+x \right ) y^{\prime }&=x \,{\mathrm e}^{-y}-1 \\ \end{align*}

2.617

13799

23174

\begin{align*} \left (x -1\right ) y^{\prime }-3 y&=\left (x -1\right )^{5} \\ y \left (-1\right ) &= 16 \\ \end{align*}

2.617

13800

12005

\begin{align*} y^{\prime }&=\frac {2 a}{y+2 a y^{4}-16 y^{2} a^{2} x +32 a^{3} x^{2}} \\ \end{align*}

2.618