| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13701 |
\begin{align*}
-y+y^{\prime }&=2 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.571 |
|
| 13702 |
\begin{align*}
y^{\prime }&=a y-b y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.571 |
|
| 13703 |
\begin{align*}
y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.572 |
|
| 13704 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.573 |
|
| 13705 |
\begin{align*}
x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.573 |
|
| 13706 |
\begin{align*}
2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.573 |
|
| 13707 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{x -1}-\frac {x y}{x -1}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.574 |
|
| 13708 |
\begin{align*}
y^{\prime }+2 y x&=2 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.575 |
|
| 13709 |
\begin{align*}
x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.575 |
|
| 13710 |
\begin{align*}
t x^{\prime }+2 x&=4 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| 13711 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| 13712 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| 13713 |
\begin{align*}
y^{\prime } x +5 y&=7 x^{2} \\
y \left (2\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.577 |
|
| 13714 |
\begin{align*}
y^{\prime }&=2-\sqrt {2 x -y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.577 |
|
| 13715 |
\begin{align*}
y^{\prime }&=-{\mathrm e}^{-t^{2}} y+\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.577 |
|
| 13716 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.577 |
|
| 13717 |
\begin{align*}
y^{\prime }-a y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.578 |
|
| 13718 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
y \left (2\right ) &= 10 \\
y^{\prime }\left (2\right ) &= 15 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.579 |
|
| 13719 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.579 |
|
| 13720 |
\begin{align*}
x^{\prime \prime }+x&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.579 |
|
| 13721 |
\begin{align*}
y^{\prime }-\frac {3 y}{x -1}&=\left (x -1\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.579 |
|
| 13722 |
\begin{align*}
\cos \left (y\right ) \sin \left (x \right )&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| 13723 |
\begin{align*}
y^{\prime }&=\csc \left (x \right )-\cot \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| 13724 |
\begin{align*}
y^{\prime \prime }+3 y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.581 |
|
| 13725 |
\begin{align*}
x^{2} y^{\prime }-4 y x&=x^{7} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.582 |
|
| 13726 |
\begin{align*}
y^{\prime \prime }&=a^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.582 |
|
| 13727 |
\begin{align*}
x \sin \left (y\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.582 |
|
| 13728 |
\begin{align*}
4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.583 |
|
| 13729 |
\begin{align*}
y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.583 |
|
| 13730 |
\begin{align*}
1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.583 |
|
| 13731 |
\begin{align*}
w^{\prime }&=\left (w^{2}-2\right ) \arctan \left (w\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.584 |
|
| 13732 |
\begin{align*}
y-x +x y \cot \left (x \right )+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.584 |
|
| 13733 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.585 |
|
| 13734 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| 13735 |
\begin{align*}
y^{\prime }&=1+a \left (x -y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.586 |
|
| 13736 |
\begin{align*}
y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.586 |
|
| 13737 |
\begin{align*}
9 y^{\prime \prime }+49 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| 13738 |
\begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.587 |
|
| 13739 |
\begin{align*}
y^{\prime \prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.587 |
|
| 13740 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=\delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 13741 |
\begin{align*}
6 y^{\prime \prime }-11 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 13742 |
\begin{align*}
y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 13743 |
\begin{align*}
y+3 y^{\prime } x&=12 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| 13744 |
\begin{align*}
2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| 13745 |
\begin{align*}
y^{3} {y^{\prime \prime }}^{2}+y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| 13746 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| 13747 |
\begin{align*}
y^{\prime }&=a \left (t \right ) y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.591 |
|
| 13748 |
\begin{align*}
y^{\prime \prime }+16 y&=4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.592 |
|
| 13749 |
\begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.592 |
|
| 13750 |
\begin{align*}
p^{\prime }&=\frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.592 |
|
| 13751 |
\begin{align*}
y^{\prime }&=\cot \left (x \right ) \cot \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.593 |
|
| 13752 |
\begin{align*}
y^{\prime }&=y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.594 |
|
| 13753 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.595 |
|
| 13754 |
\begin{align*}
y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.595 |
|
| 13755 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.596 |
|
| 13756 |
\begin{align*}
y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.596 |
|
| 13757 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (2\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.596 |
|
| 13758 |
\begin{align*}
\left (20 x^{2}+8 y x +4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+y x +y^{2}+y^{3}\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.596 |
|
| 13759 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.597 |
|
| 13760 |
\begin{align*}
y^{\prime }&=\frac {\left (x^{2}+3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.597 |
|
| 13761 |
\begin{align*}
\cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.598 |
|
| 13762 |
\begin{align*}
y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.598 |
|
| 13763 |
\begin{align*}
y^{\prime }+2 y x&=x \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.598 |
|
| 13764 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.599 |
|
| 13765 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| 13766 |
\begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| 13767 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| 13768 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.602 |
|
| 13769 |
\begin{align*}
2 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.603 |
|
| 13770 |
\begin{align*}
x {y^{\prime }}^{2}+x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 13771 |
\begin{align*}
x {y^{\prime }}^{2}-y y^{\prime }+a x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 13772 |
\begin{align*}
y^{\prime }&=-\frac {{\mathrm e}^{y}}{x \,{\mathrm e}^{y}+2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 13773 |
\begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 13774 |
\begin{align*}
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.606 |
|
| 13775 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{-\sin \left (x \right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| 13776 |
\begin{align*}
y^{\prime }&=\frac {2 y+1}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| 13777 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| 13778 |
\begin{align*}
4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| 13779 |
\begin{align*}
-\left (2 x^{2}+1\right ) y+x^{4} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| 13780 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.608 |
|
| 13781 |
\begin{align*}
2 y-3 x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.609 |
|
| 13782 |
\begin{align*}
{y^{\prime }}^{2}+y^{2}-a^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.609 |
|
| 13783 |
\begin{align*}
1+3 x \sin \left (y\right )-x^{2} y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.610 |
|
| 13784 |
\begin{align*}
y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.611 |
|
| 13785 |
\begin{align*}
-y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 13786 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 13787 |
\begin{align*}
y^{\prime }+\left (8-x \right ) y-y^{2}&=-8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.612 |
|
| 13788 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }&=8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 13789 |
\begin{align*}
\left (a^{2} x^{2}-y^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +x^{2} \left (a^{2}-1\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.613 |
|
| 13790 |
\begin{align*}
\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.613 |
|
| 13791 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= {\mathrm e}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.614 |
|
| 13792 |
\begin{align*}
3 y+x^{4} y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13793 |
\begin{align*}
p^{\prime }+2 t p&=p+4 t -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13794 |
\begin{align*}
a \,x^{2} y+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13795 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2}-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13796 |
\begin{align*}
e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13797 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 13798 |
\begin{align*}
\left ({\mathrm e}^{y}+x \right ) y^{\prime }&=x \,{\mathrm e}^{-y}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.617 |
|
| 13799 |
\begin{align*}
\left (x -1\right ) y^{\prime }-3 y&=\left (x -1\right )^{5} \\
y \left (-1\right ) &= 16 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.617 |
|
| 13800 |
\begin{align*}
y^{\prime }&=\frac {2 a}{y+2 a y^{4}-16 y^{2} a^{2} x +32 a^{3} x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.618 |
|