2.3.137 Problems 13601 to 13700

Table 2.805: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13601

22526

\begin{align*} x^{2}+y^{2}+\left (2 y x -3\right ) y^{\prime }&=0 \\ \end{align*}

2.540

13602

2958

\begin{align*} y^{\prime }-y x&={\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \\ \end{align*}

2.542

13603

13788

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (\nu ^{2}+x^{2}\right ) y&=0 \\ \end{align*}

2.542

13604

90

\begin{align*} y^{\prime } x&=2 y+\cos \left (x \right ) x^{3} \\ \end{align*}

2.543

13605

2512

\begin{align*} \frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.543

13606

5010

\begin{align*} \sqrt {x^{2}+1}\, y^{\prime }&=2 x -y \\ \end{align*}

2.543

13607

15387

\begin{align*} y y^{\prime }+x&=\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \\ \end{align*}

2.543

13608

22023

\begin{align*} x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.543

13609

25645

\begin{align*} y^{\prime }&=1-y^{2} \\ \end{align*}

2.543

13610

7116

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\ \end{align*}

2.544

13611

15235

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (-2+t \right )-\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= -{\frac {2}{3}} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.544

13612

17061

\begin{align*} y^{\prime } t +y&=t \sin \left (t \right ) \\ y \left (\pi \right ) &= 1 \\ \end{align*}

2.544

13613

19807

\begin{align*} x^{3}+4 y x +y^{2}+\left (2 x^{2}+2 y x +4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.544

13614

23116

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{2} \\ \end{align*}

2.544

13615

14222

\begin{align*} R^{\prime }&=\left (1+t \right ) \left (1+R^{2}\right ) \\ \end{align*}

2.545

13616

15800

\begin{align*} y^{\prime }&=\frac {t}{y-t^{2} y} \\ y \left (0\right ) &= 4 \\ \end{align*}

2.545

13617

19487

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

2.545

13618

5729

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

2.546

13619

7671

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.546

13620

8149

\begin{align*} x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.546

13621

13035

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

2.546

13622

19234

\begin{align*} y^{\prime } x&=y+x^{2}+y^{2} \\ \end{align*}

2.546

13623

22051

\begin{align*} 2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime }&=0 \\ \end{align*}

2.546

13624

22299

\begin{align*} s^{\prime \prime }&=-9 s \\ s \left (0\right ) &= 9 \\ s^{\prime }\left (0\right ) &= 18 \\ \end{align*}

2.546

13625

23477

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ \end{align*}

2.546

13626

19160

\begin{align*} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

2.547

13627

3804

\begin{align*} y^{\prime \prime }+y x&=\sin \left (x \right ) \\ \end{align*}

2.548

13628

4106

\begin{align*} y^{\prime }-3 y&={\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \\ y \left (5\right ) &= 5 \\ \end{align*}

2.548

13629

18591

\begin{align*} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime }&=0 \\ \end{align*}

2.548

13630

184

\begin{align*} 2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\ \end{align*}

2.549

13631

5965

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

2.549

13632

8986

\begin{align*} y^{\prime \prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.549

13633

9884

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

2.549

13634

17192

\begin{align*} y^{\prime } t +y&=t \cos \left (t \right ) \\ \end{align*}

2.549

13635

7342

\begin{align*} y+2 x -y^{\prime } x&=0 \\ \end{align*}

2.551

13636

18509

\begin{align*} y^{\prime }&=\frac {a y+b}{d +c y} \\ \end{align*}

2.551

13637

18812

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

2.551

13638

25502

\begin{align*} y^{\prime }&=-4 t y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.551

13639

807

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

2.552

13640

15951

\begin{align*} y^{\prime }&=3+y^{2} \\ \end{align*}

2.552

13641

2430

\begin{align*} t^{2} y^{\prime \prime }-5 y^{\prime } t +9 y&=0 \\ \end{align*}

2.553

13642

16386

\begin{align*} y^{\prime \prime } x&=y^{\prime }-2 x^{2} y^{\prime } \\ \end{align*}

2.553

13643

19200

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

2.553

13644

691

\begin{align*} \left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\ \end{align*}

2.555

13645

8727

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \\ \end{align*}

2.555

13646

14485

\begin{align*} x^{\prime }+\frac {x}{t^{2}}&=\frac {1}{t^{2}} \\ \end{align*}

2.555

13647

15340

\begin{align*} z-\left (-a^{2}+t^{2}\right ) z^{\prime }&=0 \\ \end{align*}

2.555

13648

18071

\begin{align*} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

2.555

13649

20120

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

2.555

13650

7917

\begin{align*} y^{\prime }+y&=2 x +2 \\ \end{align*}

2.556

13651

2342

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

2.557

13652

8471

\begin{align*} y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

2.557

13653

14556

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

2.558

13654

15489

\begin{align*} y^{\prime }-\frac {y}{x}&=1 \\ \end{align*}

2.558

13655

21830

\begin{align*} y x +x^{2} y^{\prime }&=8 x^{2} \cos \left (x \right )^{2} \\ \end{align*}

2.558

13656

191

\begin{align*} 4 x y^{2}+y^{\prime }&=5 y^{2} x^{4} \\ \end{align*}

2.559

13657

1230

\begin{align*} y^{\prime }&=1+2 x +y^{2}+2 x y^{2} \\ \end{align*}

2.559

13658

1521

\begin{align*} y^{\prime }+2 y x&=x \\ \end{align*}

2.559

13659

14168

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

2.559

13660

8838

\begin{align*} -y+y^{\prime } x&=x \sqrt {x^{2}-y^{2}}\, y^{\prime } \\ \end{align*}

2.560

13661

18489

\begin{align*} y^{\prime }&=\frac {3 x}{y+x^{2} y} \\ y \left (0\right ) &= -7 \\ \end{align*}

2.560

13662

4723

\begin{align*} y^{\prime }&=\tan \left (x \right ) \cot \left (y\right ) \\ \end{align*}

2.561

13663

1559

\begin{align*} y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y&={\mathrm e}^{-\sin \left (x \right )^{2}} \\ \end{align*}

2.562

13664

5614

\begin{align*} {y^{\prime }}^{3}+y^{\prime }+a -b x&=0 \\ \end{align*}

2.562

13665

10090

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\ \end{align*}

2.562

13666

3294

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

2.563

13667

17145

\begin{align*} y^{\prime } x +y&=x \,{\mathrm e}^{x} \\ \end{align*}

2.563

13668

21353

\begin{align*} x y^{2}-x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

2.563

13669

25672

\begin{align*} 2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\ \end{align*}

2.563

13670

1124

\begin{align*} \frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

2.564

13671

3050

\begin{align*} 2 y+y^{\prime }&=3 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.564

13672

5278

\begin{align*} x \left (x y^{2}+1\right ) y^{\prime }+y&=0 \\ \end{align*}

2.564

13673

8419

\begin{align*} y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \\ y \left (0\right ) &= -2 \\ \end{align*}

2.564

13674

23331

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

2.564

13675

1129

\begin{align*} y^{\prime }&=\frac {x^{2}}{y} \\ \end{align*}

2.565

13676

5061

\begin{align*} \left (x +y+2\right ) y^{\prime }&=-x -y+1 \\ \end{align*}

2.565

13677

16343

\begin{align*} 1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.565

13678

18067

\begin{align*} x^{2} y^{n} y^{\prime }&=2 y^{\prime } x -y \\ \end{align*}

2.565

13679

22362

\begin{align*} 2 y+{\mathrm e}^{-3 x} y^{\prime }&=0 \\ \end{align*}

2.565

13680

2969

\begin{align*} 2 y+\left (x +1\right ) y^{\prime }&=\frac {{\mathrm e}^{x}}{x +1} \\ \end{align*}

2.566

13681

3538

\begin{align*} y^{\prime }&=\sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \\ \end{align*}

2.566

13682

5636

\begin{align*} {y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y&=0 \\ \end{align*}

2.566

13683

18930

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.566

13684

19016

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{2}+5 x_{3}+9 x_{4} \\ x_{2}^{\prime }&=-2 x_{1}-5 x_{2}+4 x_{3}+12 x_{4} \\ x_{3}^{\prime }&=-2 x_{1}-x_{3}+2 x_{4} \\ x_{4}^{\prime }&=-2 x_{2}+2 x_{3}+3 x_{4} \\ \end{align*}

2.566

13685

22457

\begin{align*} y^{\prime }-y&=x y^{2} \\ \end{align*}

2.566

13686

4968

\begin{align*} x^{3} y^{\prime }&=3-x^{2}+x^{2} y \\ \end{align*}

2.567

13687

16280

\begin{align*} y^{\prime } x&=y+\cos \left (x \right ) x^{2} \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

2.567

13688

19803

\begin{align*} \left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.567

13689

21460

\begin{align*} u^{\prime \prime }-\left (x +1\right ) u^{\prime }+\left (x -1\right ) u&=0 \\ \end{align*}

2.567

13690

25499

\begin{align*} y^{\prime }&=t y+t +y+1 \\ \end{align*}

2.567

13691

5341

\begin{align*} x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=y \\ \end{align*}

2.568

13692

6002

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

2.568

13693

18519

\begin{align*} -y+y^{\prime } t&=t^{3} {\mathrm e}^{-t} \\ \end{align*}

2.568

13694

7437

\begin{align*} y^{\prime }+\frac {3 y}{x}+2&=3 x \\ y \left (1\right ) &= 1 \\ \end{align*}

2.569

13695

13728

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{n} y&=0 \\ \end{align*}

2.569

13696

17177

\begin{align*} -y+y^{\prime }&=\sin \left (2 t \right ) \\ \end{align*}

2.569

13697

21184

\begin{align*} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

2.569

13698

4843

\begin{align*} \left (a +x \right ) y^{\prime }+b \,x^{2}+y&=0 \\ \end{align*}

2.570

13699

6844

\begin{align*} z^{\prime }+2 x z&=2 a \,x^{3} z^{3} \\ \end{align*}

2.570

13700

8138

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.570