2.3.181 Problems 18001 to 18100

Table 2.893: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18001

5616

\begin{align*} y^{\prime }+{y^{\prime }}^{3}&={\mathrm e}^{y} \\ \end{align*}

5.231

18002

9215

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

5.231

18003

16569

\begin{align*} 3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y&=0 \\ \end{align*}

5.232

18004

16570

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

5.233

18005

21030

\begin{align*} x^{\prime }&=x^{2} \\ x \left (t_{0} \right ) &= a \\ \end{align*}

5.233

18006

21070

\begin{align*} y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

5.233

18007

22537

\begin{align*} y^{\prime }&={\mathrm e}^{\frac {y}{x}}+\frac {y}{x} \\ \end{align*}

5.233

18008

24222

\begin{align*} x^{4} y^{\prime }&=-x^{3} y-\csc \left (y x \right ) \\ \end{align*}

5.236

18009

3002

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\ y \left (0\right ) &= 1 \\ \end{align*}

5.237

18010

12091

\begin{align*} y^{\prime }&=\frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \\ \end{align*}

5.237

18011

4628

\begin{align*} y^{\prime }&=\left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \\ \end{align*}

5.238

18012

7573

\begin{align*} 2 y^{\prime \prime }+18 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

5.239

18013

17350

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

5.240

18014

21989

\begin{align*} y^{\prime }&=-\frac {2 y}{x} \\ \end{align*}

5.240

18015

25828

\begin{align*} x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\ \end{align*}

5.241

18016

3464

\begin{align*} \left (y^{3}+x \right ) y^{\prime }&=y \\ \end{align*}

5.244

18017

4813

\begin{align*} y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right )&=0 \\ \end{align*}

5.244

18018

22021

\begin{align*} y^{\prime }&=\frac {x^{4}+3 y^{2} x^{2}+y^{4}}{x^{3} y} \\ \end{align*}

5.244

18019

7809

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x^{4} \\ \end{align*}

5.245

18020

25111

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

5.245

18021

2944

\begin{align*} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\ \end{align*}

5.246

18022

25105

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

5.246

18023

4887

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \\ \end{align*}

5.247

18024

5833

\begin{align*} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

5.248

18025

19401

\begin{align*} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

5.250

18026

21571

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\ \end{align*}

5.250

18027

8832

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

5.251

18028

22373

\begin{align*} r^{\prime }&=\frac {\sin \left (t \right )+{\mathrm e}^{r} \sin \left (t \right )}{3 \,{\mathrm e}^{r}+{\mathrm e}^{r} \cos \left (2 t \right )} \\ r \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

5.252

18029

6024

\begin{align*} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

5.253

18030

17955

\begin{align*} \left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime }&=3 x^{2} \\ \end{align*}

5.253

18031

12008

\begin{align*} y^{\prime }&=-\frac {a b y-b c +b^{2} x +b a \sqrt {x}-a^{2}}{a \left (a y-c +b x +a \sqrt {x}\right )} \\ \end{align*}

5.254

18032

19910

\begin{align*} \left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y}&=0 \\ \end{align*}

5.254

18033

23108

\begin{align*} m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\ \end{align*}

5.254

18034

516

\begin{align*} y^{\prime \prime } x -y^{\prime }+36 x^{3} y&=0 \\ \end{align*}

5.256

18035

5899

\begin{align*} a \,x^{2} y+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

5.256

18036

5920

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

5.259

18037

11330

\begin{align*} y^{\prime }+x y^{2}-x^{3} y-2 x&=0 \\ \end{align*}

5.259

18038

15625

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ y \left (-1\right ) &= 1 \\ \end{align*}

5.259

18039

1153

\begin{align*} y^{\prime }&=\frac {2 \cos \left (2 x \right )}{3+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

5.261

18040

5419

\begin{align*} {y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y&=0 \\ \end{align*}

5.263

18041

8367

\begin{align*} x \sinh \left (y\right ) y^{\prime }&=\cosh \left (y\right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

5.263

18042

18936

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

5.263

18043

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

5.265

18044

16608

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\ \end{align*}

5.265

18045

24225

\begin{align*} x \left (x^{2}-y^{2}-x \right )-y \left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 0 \\ \end{align*}

5.266

18046

23097

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

5.268

18047

24374

\begin{align*} 4 y^{2}+10 y x -4 y+8+x \left (2 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

5.269

18048

110

\begin{align*} \left (x +2 y\right ) y^{\prime }&=y \\ \end{align*}

5.270

18049

5919

\begin{align*} -\left (1-x \right ) y+\left (1-2 x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

5.271

18050

21494

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

5.271

18051

22632

\begin{align*} i^{\prime \prime }-4 i^{\prime }+2 i&=0 \\ \end{align*}

5.271

18052

849

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

5.273

18053

9123

\begin{align*} y^{\prime } x&=2 x^{2} y+y \ln \left (x \right ) \\ \end{align*}

5.274

18054

23930

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

5.274

18055

17941

\begin{align*} \left (\frac {{\mathrm e}^{-y^{2}}}{2}-y x \right ) y^{\prime }-1&=0 \\ \end{align*}

5.276

18056

13944

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\ \end{align*}

5.277

18057

11752

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -9 y&=0 \\ \end{align*}

5.278

18058

19268

\begin{align*} 3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{8} \\ \end{align*}

5.278

18059

20607

\begin{align*} \left (-x +3\right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y&=0 \\ \end{align*}

5.279

18060

22592

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x -y}}{y} \\ \end{align*}

5.279

18061

5133

\begin{align*} y y^{\prime } x +x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2}&=0 \\ \end{align*}

5.280

18062

8467

\begin{align*} y^{\prime }-\sin \left (x^{2}\right ) y&=0 \\ y \left (0\right ) &= 5 \\ \end{align*}

5.282

18063

11898

\begin{align*} y^{\prime }&=\frac {y}{x \left (-1+F \left (y x \right ) y\right )} \\ \end{align*}

5.282

18064

7413

\begin{align*} y^{\prime }&=x y^{3} \\ \end{align*}

5.283

18065

24900

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

5.283

18066

9792

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

5.285

18067

4352

\begin{align*} 2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

5.286

18068

8292

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

5.286

18069

9581

\begin{align*} y^{\prime \prime } x +y^{\prime }-7 x^{3} y&=0 \\ \end{align*}

5.287

18070

11497

\begin{align*} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3}&=0 \\ \end{align*}

5.287

18071

9054

\begin{align*} y^{\prime } x +y&=y^{\prime } \sqrt {1-y^{2} x^{2}} \\ \end{align*}

5.289

18072

20250

\begin{align*} x +y+1-\left (2 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

5.290

18073

16146

\begin{align*} y^{\prime \prime }+y^{\prime }+8 y&=\left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

5.292

18074

17238

\begin{align*} t^{2} y+t^{3} y^{\prime }&=0 \\ \end{align*}

5.292

18075

19825

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

5.292

18076

10149

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x \\ \end{align*}

5.293

18077

25822

\begin{align*} y \,{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{-y}+{\mathrm e}^{-2 x -y} \\ \end{align*}

5.293

18078

17741

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\ \end{align*}

5.294

18079

23213

\begin{align*} y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\ \end{align*}

5.294

18080

8381

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\ \end{align*}

5.296

18081

114

\begin{align*} y y^{\prime } x&=x^{2}+3 y^{2} \\ \end{align*}

5.297

18082

5031

\begin{align*} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y&=0 \\ \end{align*}

5.298

18083

8753

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

5.298

18084

10404

\begin{align*} y {y^{\prime \prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

5.299

18085

5074

\begin{align*} \left (a +b x +y\right ) y^{\prime }+a -b x -y&=0 \\ \end{align*}

5.301

18086

7625

\begin{align*} \left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

5.308

18087

20243

\begin{align*} \left (2 x +2 y+1\right ) y^{\prime }&=x +y+1 \\ \end{align*}

5.309

18088

18728

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

5.311

18089

7928

\begin{align*} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\ \end{align*}

5.312

18090

18576

\begin{align*} 2 x -2 \,{\mathrm e}^{y x} \sin \left (2 x \right )+{\mathrm e}^{y x} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{y x} x \cos \left (2 x \right )\right ) y^{\prime }&=0 \\ \end{align*}

5.312

18091

20590

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

5.312

18092

5947

\begin{align*} -y-2 y^{\prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

5.313

18093

9014

\begin{align*} y^{\prime }&=\frac {x +y}{x -y} \\ \end{align*}

5.313

18094

5905

\begin{align*} b y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

5.314

18095

24138

\begin{align*} 1+\ln \left (x \right )+\left (1+\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

5.314

18096

7291

\begin{align*} y^{\prime \prime }+16 y&=16 \cos \left (4 x \right ) \\ \end{align*}

5.315

18097

22648

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

5.315

18098

14561

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

5.316

18099

17850

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=2 x \\ \end{align*}

5.316

18100

18871

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

5.316