1.45 problem 45
Internal
problem
ID
[8082]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
45
Date
solved
:
Monday, October 21, 2024 at 04:47:46 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Solve
\begin{align*} y {y^{\prime \prime }}^{2}+y^{\prime }&=0 \end{align*}
1.45.1 Solved as second order missing x ode
Time used: 10.010 (sec)
This is missing independent variable second order ode. Solved by reduction of order by using
substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} y p \left (y \right )^{2} \left (\frac {d}{d y}p \left (y \right )\right )^{2}+p \left (y \right ) = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} p^{\prime }&=-\frac {1}{\sqrt {-p y}} \\
\tag{2} p^{\prime }&=\frac {1}{\sqrt {-p y}} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied,
then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know
now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not
satisfied then this method will not work and we have to now look for an integrating
factor to force this condition, which might or might not exist. The first step is
to write the ODE in standard form to check for exactness, which is
\[ M(y,p) \mathop {\mathrm {d}y}+ N(y,p) \mathop {\mathrm {d}p}=0 \tag {1A} \]
Therefore
\begin{align*} \mathop {\mathrm {d}p} &= \left (-\frac {1}{\sqrt {-p y}}\right )\mathop {\mathrm {d}y}\\ \left (\frac {1}{\sqrt {-p y}}\right ) \mathop {\mathrm {d}y} + \mathop {\mathrm {d}p} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(y,p) &= \frac {1}{\sqrt {-p y}}\\ N(y,p) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied
\[ \frac {\partial M}{\partial p} = \frac {\partial N}{\partial y} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial p} &= \frac {\partial }{\partial p} \left (\frac {1}{\sqrt {-p y}}\right )\\ &= -\frac {1}{2 \sqrt {-p y}\, p} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial y} &= \frac {\partial }{\partial y} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial p} \neq \frac {\partial N}{\partial y}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an
integrating factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial p} - \frac {\partial N}{\partial y} \right ) \\ &=1\left ( \left ( \frac {y}{2 \left (-p y \right )^{{3}/{2}}}\right ) - \left (0 \right ) \right ) \\ &=-\frac {1}{2 \sqrt {-p y}\, p} \end{align*}
Since \(A\) depends on \(p\), it can not be used to obtain an integrating factor. We will now try a
second method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial y} - \frac {\partial M}{\partial p} \right ) \\ &=\sqrt {-p y}\left ( \left ( 0\right ) - \left (\frac {y}{2 \left (-p y \right )^{{3}/{2}}} \right ) \right ) \\ &=\frac {1}{2 p} \end{align*}
Since \(B\) does not depend on \(y\), it can be used to obtain an integrating factor. Let the
integrating factor be \(\mu \). Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}p}} \\ &= e^{\int \frac {1}{2 p}\mathop {\mathrm {d}p} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{\frac {\ln \left (p \right )}{2} } \\ &= \sqrt {p} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\)
and \(\overline {N}\) so not to confuse them with the original \(M\) and \(N\).
\begin{align*} \overline {M} &=\mu M \\ &= \sqrt {p}\left (\frac {1}{\sqrt {-p y}}\right ) \\ &= \frac {\sqrt {p}}{\sqrt {-p y}} \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= \sqrt {p}\left (1\right ) \\ &= \sqrt {p} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be
solved using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}} &= 0 \\ \left (\frac {\sqrt {p}}{\sqrt {-p y}}\right ) + \left (\sqrt {p}\right ) \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (y,p\right )\)
\begin{align*} \frac {\partial \phi }{\partial y } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial p } &= \overline {N}\tag {2} \end{align*}
Integrating (2) w.r.t. \(p\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial p} \mathop {\mathrm {d}p} &= \int \overline {N}\mathop {\mathrm {d}p} \\
\int \frac {\partial \phi }{\partial p} \mathop {\mathrm {d}p} &= \int \sqrt {p}\mathop {\mathrm {d}p} \\
\tag{3} \phi &= \frac {2 p^{{3}/{2}}}{3}+ f(y) \\
\end{align*}
Where \(f(y)\) is used for the constant of integration since \(\phi \) is a function
of both \(y\) and \(p\). Taking derivative of equation (3) w.r.t \(y\) gives
\begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y)
\end{equation}
But equation (1) says that \(\frac {\partial \phi }{\partial y} = \frac {\sqrt {p}}{\sqrt {-p y}}\).
Therefore equation (4) becomes
\begin{equation}
\tag{5} \frac {\sqrt {p}}{\sqrt {-p y}} = 0+f'(y)
\end{equation}
Solving equation (5) for \( f'(y)\) gives
\[
f'(y) = \frac {\sqrt {p}}{\sqrt {-p y}}
\]
Integrating the above w.r.t \(y\)
gives
\begin{align*}
\int f'(y) \mathop {\mathrm {d}y} &= \int \left ( \frac {\sqrt {p}}{\sqrt {-p y}}\right ) \mathop {\mathrm {d}y} \\
f(y) &= -\frac {2 \sqrt {-p y}}{\sqrt {p}}+ c_1 \\
\end{align*}
Where \(c_1\) is constant of integration. Substituting result found above for \(f(y)\) into equation
(3) gives \(\phi \)
\[
\phi = \frac {2 p^{{3}/{2}}}{3}-\frac {2 \sqrt {-p y}}{\sqrt {p}}+ c_1
\]
But since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and
combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives the solution as
\[
c_1 = \frac {2 p^{{3}/{2}}}{3}-\frac {2 \sqrt {-p y}}{\sqrt {p}}
\]
Solving Eq. (2)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied,
then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know
now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not
satisfied then this method will not work and we have to now look for an integrating
factor to force this condition, which might or might not exist. The first step is
to write the ODE in standard form to check for exactness, which is
\[ M(y,p) \mathop {\mathrm {d}y}+ N(y,p) \mathop {\mathrm {d}p}=0 \tag {1A} \]
Therefore
\begin{align*} \mathop {\mathrm {d}p} &= \left (\frac {1}{\sqrt {-p y}}\right )\mathop {\mathrm {d}y}\\ \left (-\frac {1}{\sqrt {-p y}}\right ) \mathop {\mathrm {d}y} + \mathop {\mathrm {d}p} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(y,p) &= -\frac {1}{\sqrt {-p y}}\\ N(y,p) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied
\[ \frac {\partial M}{\partial p} = \frac {\partial N}{\partial y} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial p} &= \frac {\partial }{\partial p} \left (-\frac {1}{\sqrt {-p y}}\right )\\ &= \frac {1}{2 \sqrt {-p y}\, p} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial y} &= \frac {\partial }{\partial y} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial p} \neq \frac {\partial N}{\partial y}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an
integrating factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial p} - \frac {\partial N}{\partial y} \right ) \\ &=1\left ( \left ( -\frac {y}{2 \left (-p y \right )^{{3}/{2}}}\right ) - \left (0 \right ) \right ) \\ &=\frac {1}{2 \sqrt {-p y}\, p} \end{align*}
Since \(A\) depends on \(p\), it can not be used to obtain an integrating factor. We will now try a
second method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial y} - \frac {\partial M}{\partial p} \right ) \\ &=-\sqrt {-p y}\left ( \left ( 0\right ) - \left (-\frac {y}{2 \left (-p y \right )^{{3}/{2}}} \right ) \right ) \\ &=\frac {1}{2 p} \end{align*}
Since \(B\) does not depend on \(y\), it can be used to obtain an integrating factor. Let the
integrating factor be \(\mu \). Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}p}} \\ &= e^{\int \frac {1}{2 p}\mathop {\mathrm {d}p} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{\frac {\ln \left (p \right )}{2} } \\ &= \sqrt {p} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\)
and \(\overline {N}\) so not to confuse them with the original \(M\) and \(N\).
\begin{align*} \overline {M} &=\mu M \\ &= \sqrt {p}\left (-\frac {1}{\sqrt {-p y}}\right ) \\ &= -\frac {\sqrt {p}}{\sqrt {-p y}} \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= \sqrt {p}\left (1\right ) \\ &= \sqrt {p} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be
solved using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}} &= 0 \\ \left (-\frac {\sqrt {p}}{\sqrt {-p y}}\right ) + \left (\sqrt {p}\right ) \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (y,p\right )\)
\begin{align*} \frac {\partial \phi }{\partial y } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial p } &= \overline {N}\tag {2} \end{align*}
Integrating (2) w.r.t. \(p\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial p} \mathop {\mathrm {d}p} &= \int \overline {N}\mathop {\mathrm {d}p} \\
\int \frac {\partial \phi }{\partial p} \mathop {\mathrm {d}p} &= \int \sqrt {p}\mathop {\mathrm {d}p} \\
\tag{3} \phi &= \frac {2 p^{{3}/{2}}}{3}+ f(y) \\
\end{align*}
Where \(f(y)\) is used for the constant of integration since \(\phi \) is a function
of both \(y\) and \(p\). Taking derivative of equation (3) w.r.t \(y\) gives
\begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y)
\end{equation}
But equation (1) says that \(\frac {\partial \phi }{\partial y} = -\frac {\sqrt {p}}{\sqrt {-p y}}\).
Therefore equation (4) becomes
\begin{equation}
\tag{5} -\frac {\sqrt {p}}{\sqrt {-p y}} = 0+f'(y)
\end{equation}
Solving equation (5) for \( f'(y)\) gives
\[
f'(y) = -\frac {\sqrt {p}}{\sqrt {-p y}}
\]
Integrating the above w.r.t \(y\)
gives
\begin{align*}
\int f'(y) \mathop {\mathrm {d}y} &= \int \left ( -\frac {\sqrt {p}}{\sqrt {-p y}}\right ) \mathop {\mathrm {d}y} \\
f(y) &= \frac {2 \sqrt {-p y}}{\sqrt {p}}+ c_2 \\
\end{align*}
Where \(c_2\) is constant of integration. Substituting result found above for \(f(y)\) into equation
(3) gives \(\phi \)
\[
\phi = \frac {2 p^{{3}/{2}}}{3}+\frac {2 \sqrt {-p y}}{\sqrt {p}}+ c_2
\]
But since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and
combining \(c_2\) and \(c_2\) constants into the constant \(c_2\) gives the solution as
\[
c_2 = \frac {2 p^{{3}/{2}}}{3}+\frac {2 \sqrt {-p y}}{\sqrt {p}}
\]
For solution
(1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} \frac {2 {y^{\prime }}^{{3}/{2}}}{3}-\frac {2 \sqrt {-y y^{\prime }}}{\sqrt {y^{\prime }}} = c_1 \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}}}{4} \\
\tag{2} y^{\prime }&=\left (-\frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}+\frac {i \sqrt {3}\, \left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{3} y^{\prime }&=\left (-\frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}-\frac {i \sqrt {3}\, \left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{4} y^{\prime }&=\frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}}}{4} \\
\tag{5} y^{\prime }&=\left (-\frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}-\frac {i \sqrt {3}\, \left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{6} y^{\prime }&=\left (-\frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}+\frac {i \sqrt {3}\, \left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Integrating gives
\begin{align*} \int \frac {4}{\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}}}d y &= dx\\ -\frac {\left (-3 c_1 +2 \sqrt {-y}\right ) \left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{8}&= x +c_3 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
Solving Eq. (2)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}d y &= dx\\ -\frac {\left (i \sqrt {3}-1\right ) \left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}} \left (-3 c_1 +2 \sqrt {-y}\right )}{16}&= x +c_4 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
Solving Eq. (3)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}d y &= dx\\ -\frac {3 \left (c_1 -\frac {2 \sqrt {-y}}{3}\right ) \left (1+i \sqrt {3}\right ) \left (12 c_1 +24 \sqrt {-y}\right )^{{1}/{3}}}{16}&= x +c_5 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 +24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
Solving Eq. (4)
Integrating gives
\begin{align*} \int \frac {4}{\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}}}d y &= dx\\ \frac {\left (3 c_1 +2 \sqrt {-y}\right ) \left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}}}{8}&= x +c_6 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
Solving Eq. (5)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}d y &= dx\\ -\frac {3 \left (1+i \sqrt {3}\right ) \left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}} \left (c_1 +\frac {2 \sqrt {-y}}{3}\right )}{16}&= x +c_7 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
Solving Eq. (6)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}d y &= dx\\ \frac {\left (i \sqrt {3}-1\right ) \left (12 c_1 -24 \sqrt {-y}\right )^{{1}/{3}} \left (3 c_1 +2 \sqrt {-y}\right )}{16}&= x +c_8 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_1 -24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_1^{2}}{4} \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} \frac {2 {y^{\prime }}^{{3}/{2}}}{3}+\frac {2 \sqrt {-y y^{\prime }}}{\sqrt {y^{\prime }}} = c_2 \end{align*}
Solving for the derivative gives these ODE’s to solve
\begin{align*}
\tag{1} y^{\prime }&=\frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}}}{4} \\
\tag{2} y^{\prime }&=\left (-\frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}+\frac {i \sqrt {3}\, \left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{3} y^{\prime }&=\left (-\frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}-\frac {i \sqrt {3}\, \left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{4} y^{\prime }&=\frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}}}{4} \\
\tag{5} y^{\prime }&=\left (-\frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}-\frac {i \sqrt {3}\, \left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\tag{6} y^{\prime }&=\left (-\frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}+\frac {i \sqrt {3}\, \left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}}}{4}\right )^{2} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Integrating gives
\begin{align*} \int \frac {4}{\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}}}d y &= dx\\ -\frac {\left (-3 c_2 +2 \sqrt {-y}\right ) \left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{8}&= x +c_9 \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Solving Eq. (2)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}d y &= dx\\ -\frac {\left (i \sqrt {3}-1\right ) \left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}} \left (-3 c_2 +2 \sqrt {-y}\right )}{16}&= x +\textit {\_C10} \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Solving Eq. (3)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}d y &= dx\\ -\frac {3 \left (c_2 -\frac {2 \sqrt {-y}}{3}\right ) \left (1+i \sqrt {3}\right ) \left (12 c_2 +24 \sqrt {-y}\right )^{{1}/{3}}}{16}&= x +\textit {\_C11} \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 +24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Solving Eq. (4)
Integrating gives
\begin{align*} \int \frac {4}{\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}}}d y &= dx\\ \frac {\left (3 c_2 +2 \sqrt {-y}\right ) \left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}}}{8}&= x +\textit {\_C12} \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}}}{4}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Solving Eq. (5)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}d y &= dx\\ -\frac {3 \left (1+i \sqrt {3}\right ) \left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}} \left (c_2 +\frac {2 \sqrt {-y}}{3}\right )}{16}&= x +\textit {\_C13} \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}} \left (1+i \sqrt {3}\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Solving Eq. (6)
Integrating gives
\begin{align*} \int \frac {16}{\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}d y &= dx\\ \frac {\left (i \sqrt {3}-1\right ) \left (12 c_2 -24 \sqrt {-y}\right )^{{1}/{3}} \left (3 c_2 +2 \sqrt {-y}\right )}{16}&= x +\textit {\_C14} \end{align*}
Singular solutions are found by solving
\begin{align*} \frac {\left (12 c_2 -24 \sqrt {-y}\right )^{{2}/{3}} \left (i \sqrt {3}-1\right )^{2}}{16}&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = -\frac {c_2^{2}}{4} \end{align*}
Will add steps showing solving for IC soon.
Solving for \(y\) from the above solution(s) gives (after possible removing of solutions that do not
verify)
\begin{align*} y&=-\frac {c_1^{2}}{4}\\ y&=-\frac {c_2^{2}}{4}\\ y&=-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_3 +6 x \right )^{3}}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_3 +6 x \right )^{2} c_3}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_3 +6 x \right )^{2} x}{3}-\frac {c_1^{2}}{4}\\ y&=-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_6 +6 x \right )^{3}}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_6 +6 x \right )^{2} c_6}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_1 \textit {\_Z} +6 c_6 +6 x \right )^{2} x}{3}-\frac {c_1^{2}}{4}\\ y&=-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 \textit {\_C12} +6 x \right )^{3}}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 \textit {\_C12} +6 x \right )^{2} \textit {\_C12}}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 \textit {\_C12} +6 x \right )^{2} x}{3}-\frac {c_2^{2}}{4}\\ y&=-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 c_9 +6 x \right )^{3}}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 c_9 +6 x \right )^{2} c_9}{3}+\frac {2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-6 c_2 \textit {\_Z} +6 c_9 +6 x \right )^{2} x}{3}-\frac {c_2^{2}}{4}\\ y&=-\frac {i \textit {\_C10} \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C10} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C10} -3 x \right )^{2}}{3}-\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C10} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C10} -3 x \right )^{2}}{3}-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C10} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C10} -3 x \right )^{3}}{3}-\frac {\textit {\_C10} \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C10} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C10} -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C10} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C10} -3 x \right )^{2}}{3}-\frac {c_2^{2}}{4}\\ y&=-\frac {i \textit {\_C14} \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C14} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C14} -3 x \right )^{2}}{3}-\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C14} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C14} -3 x \right )^{2}}{3}-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C14} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C14} -3 x \right )^{3}}{3}-\frac {\textit {\_C14} \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C14} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C14} -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, \textit {\_C14} -3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C14} -3 x \right )^{2}}{3}-\frac {c_2^{2}}{4}\\ y&=-\frac {i c_4 \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_4 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_4 -3 x \right )^{2}}{3}-\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_4 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_4 -3 x \right )^{2}}{3}-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_4 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_4 -3 x \right )^{3}}{3}-\frac {c_4 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_4 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_4 -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_4 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_4 -3 x \right )^{2}}{3}-\frac {c_1^{2}}{4}\\ y&=-\frac {i c_8 \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_8 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_8 -3 x \right )^{2}}{3}-\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_8 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_8 -3 x \right )^{2}}{3}-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_8 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_8 -3 x \right )^{3}}{3}-\frac {c_8 \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_8 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_8 -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}-3 i \sqrt {3}\, c_8 -3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_8 -3 x \right )^{2}}{3}-\frac {c_1^{2}}{4}\\ y&=\frac {i \textit {\_C11} \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C11} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C11} -3 x \right )^{2}}{3}+\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C11} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C11} -3 x \right )^{2}}{3}-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C11} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C11} -3 x \right )^{3}}{3}-\frac {\textit {\_C11} \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C11} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C11} -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C11} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C11} -3 x \right )^{2}}{3}-\frac {c_2^{2}}{4}\\ y&=\frac {i \textit {\_C13} \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C13} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C13} -3 x \right )^{2}}{3}+\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C13} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C13} -3 x \right )^{2}}{3}-\frac {c_2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C13} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C13} -3 x \right )^{3}}{3}-\frac {\textit {\_C13} \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C13} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C13} -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, \textit {\_C13} +3 i \sqrt {3}\, x -6 c_2 \textit {\_Z} -3 \textit {\_C13} -3 x \right )^{2}}{3}-\frac {c_2^{2}}{4}\\ y&=\frac {i c_5 \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_5 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_5 -3 x \right )^{2}}{3}+\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_5 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_5 -3 x \right )^{2}}{3}-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_5 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_5 -3 x \right )^{3}}{3}-\frac {c_5 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_5 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_5 -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_5 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_5 -3 x \right )^{2}}{3}-\frac {c_1^{2}}{4}\\ y&=\frac {i c_7 \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_7 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_7 -3 x \right )^{2}}{3}+\frac {i x \sqrt {3}\, \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_7 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_7 -3 x \right )^{2}}{3}-\frac {c_1 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_7 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_7 -3 x \right )^{3}}{3}-\frac {c_7 \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_7 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_7 -3 x \right )^{2}}{3}-\frac {x \operatorname {RootOf}\left (\textit {\_Z}^{4}+3 i \sqrt {3}\, c_7 +3 i \sqrt {3}\, x -6 c_1 \textit {\_Z} -3 c_7 -3 x \right )^{2}}{3}-\frac {c_1^{2}}{4} \end{align*}
1.45.2 Maple step by step solution
1.45.3 Maple trace
Methods for second order ODEs:
1.45.4 Maple dsolve solution
Solving time : 0.084
(sec)
Leaf size : 255
dsolve(y(x)*diff(diff(y(x),x),x)^2+diff(y(x),x) = 0,
y(x),singsol=all)
\begin{align*}
y &= c_1 \\
y &= 0 \\
-\left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_2 &= 0 \\
-\left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_2 &= 0 \\
\frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )-2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 -3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )-2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-4 \left (\int _{}^{y}\frac {\textit {\_a}}{\left (\textit {\_a}^{{3}/{2}} \left (c_1 +3 \sqrt {\textit {\_a}}\right )\right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_2 \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\end{align*}
1.45.5 Mathematica DSolve solution
Solving time : 60.97
(sec)
Leaf size : 23861
DSolve[{y[x]*D[y[x],{x,2}]^2+D[y[x],x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
Too large to display