| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 18201 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.402 |
|
| 18202 |
\begin{align*}
\frac {x -2}{x^{2}-4 x +3}&=\frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.403 |
|
| 18203 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.407 |
|
| 18204 |
\begin{align*}
y^{\prime }&=-x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.408 |
|
| 18205 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
5.408 |
|
| 18206 |
\begin{align*}
6 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.410 |
|
| 18207 |
\begin{align*}
y^{\prime }&=\left (-1+y\right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.410 |
|
| 18208 |
\begin{align*}
\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left ({\mathrm e}^{x}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.411 |
|
| 18209 |
\begin{align*}
y^{\prime }&=\sqrt {{| y|}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.411 |
|
| 18210 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-y^{2}}}{y \left (x^{2}+2 x \right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.411 |
|
| 18211 |
\begin{align*}
x&=t x^{\prime }-{\mathrm e}^{x^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.411 |
|
| 18212 |
\begin{align*}
2 x^{2} y^{\prime \prime }+7 y^{\prime } x -3 y&=\frac {\ln \left (x \right )}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.411 |
|
| 18213 |
\begin{align*}
a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.414 |
|
| 18214 |
\begin{align*}
y^{\prime }&=\left (a \,{\mathrm e}^{x}+y\right ) y^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.415 |
|
| 18215 |
\begin{align*}
y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.415 |
|
| 18216 |
\begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.415 |
|
| 18217 |
\begin{align*}
x^{2} y^{\prime }&=a +b \,x^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.416 |
|
| 18218 |
\begin{align*}
\left (x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.417 |
|
| 18219 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.417 |
|
| 18220 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.420 |
|
| 18221 |
\begin{align*}
x^{3}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.420 |
|
| 18222 |
\begin{align*}
{\mathrm e}^{x} \cos \left (y\right )+x -\left ({\mathrm e}^{x} \sin \left (y\right )+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.421 |
|
| 18223 |
\begin{align*}
-x^{3} y+x^{4} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.422 |
|
| 18224 |
\begin{align*}
2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.422 |
|
| 18225 |
\begin{align*}
y^{\prime \prime }+25 y&=\cos \left (5 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.423 |
|
| 18226 |
\begin{align*}
y^{\prime } x -2 y+b y^{2}&=c \,x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.425 |
|
| 18227 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.425 |
|
| 18228 |
\begin{align*}
y^{\prime }-\frac {y}{2 x \ln \left (x \right )}&=2 x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.427 |
|
| 18229 |
\begin{align*}
\left (6 x -2 y\right ) y^{\prime }&=2+3 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.429 |
|
| 18230 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.430 |
|
| 18231 |
\begin{align*}
x^{\prime \prime }+100 x&=0 \\
x \left (0\right ) &= -{\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.430 |
|
| 18232 |
\begin{align*}
t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.431 |
|
| 18233 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.432 |
|
| 18234 |
\begin{align*}
y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.432 |
|
| 18235 |
\begin{align*}
6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.434 |
|
| 18236 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.434 |
|
| 18237 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.435 |
|
| 18238 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.436 |
|
| 18239 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.436 |
|
| 18240 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.438 |
|
| 18241 |
\begin{align*}
-y+2 n y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.438 |
|
| 18242 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.438 |
|
| 18243 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.439 |
|
| 18244 |
\begin{align*}
\left (x +1\right ) y^{\prime }+1&=2 \,{\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.442 |
|
| 18245 |
\begin{align*}
-y^{\prime } x +y&=y y^{\prime }+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.442 |
|
| 18246 |
\begin{align*}
x x^{\prime }&=1-t x \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.443 |
|
| 18247 |
\begin{align*}
y^{\prime } x +2 y&=3 x -1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.444 |
|
| 18248 |
\begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+4}+\sqrt {x} \\
y \left (3\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.444 |
|
| 18249 |
\begin{align*}
-y+\left (a +x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.446 |
|
| 18250 |
\begin{align*}
\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.447 |
|
| 18251 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.447 |
|
| 18252 |
\begin{align*}
x^{\prime }+\frac {x}{y}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.449 |
|
| 18253 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=x^{3} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.450 |
|
| 18254 |
\begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.450 |
|
| 18255 |
\begin{align*}
y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.451 |
|
| 18256 |
\begin{align*}
y^{\prime }&=\frac {3 x -4 y-2}{3 x -4 y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.451 |
|
| 18257 |
\begin{align*}
y^{\prime }&=x^{2} y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.451 |
|
| 18258 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.452 |
|
| 18259 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.452 |
|
| 18260 |
\begin{align*}
y^{\prime }&=\frac {x +y+4}{x +y-6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.453 |
|
| 18261 |
\begin{align*}
y \left (x^{3} {\mathrm e}^{y x}-y\right )+x \left (y+x^{3} {\mathrm e}^{y x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.455 |
|
| 18262 |
\begin{align*}
y^{\prime }&=-\frac {-x^{2}+2 x^{3} y-F \left (\left (y x -1\right ) x \right )}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.459 |
|
| 18263 |
\begin{align*}
{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.460 |
|
| 18264 |
\begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.460 |
|
| 18265 |
\begin{align*}
-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.460 |
|
| 18266 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=-2 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.460 |
|
| 18267 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.461 |
|
| 18268 |
\begin{align*}
z^{\prime \prime }+\frac {z}{1+z^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.463 |
|
| 18269 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.464 |
|
| 18270 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.465 |
|
| 18271 |
\begin{align*}
y&={y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.466 |
|
| 18272 |
\begin{align*}
y^{\prime \prime }+w^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.467 |
|
| 18273 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.470 |
|
| 18274 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.471 |
|
| 18275 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.472 |
|
| 18276 |
\begin{align*}
t x^{\prime }&=6 \,{\mathrm e}^{2 t} t +x \left (2 t -1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.472 |
|
| 18277 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.473 |
|
| 18278 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.476 |
|
| 18279 |
\begin{align*}
y^{\prime }+y&=2 x \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.476 |
|
| 18280 |
\begin{align*}
-{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.477 |
|
| 18281 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.478 |
|
| 18282 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.480 |
|
| 18283 |
\begin{align*}
y^{\prime } x +n y&=f \left (x \right ) g \left (x^{n} y\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.483 |
|
| 18284 |
\begin{align*}
\theta ^{\prime \prime }&=-p^{2} \theta \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.483 |
|
| 18285 |
\begin{align*}
\left (p \left (1+p \right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.484 |
|
| 18286 |
\begin{align*}
y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.485 |
|
| 18287 |
\begin{align*}
y^{\prime }&=\frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.487 |
|
| 18288 |
\begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.488 |
|
| 18289 |
\begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.491 |
|
| 18290 |
\begin{align*}
x&=y+a \ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.492 |
|
| 18291 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.495 |
|
| 18292 |
\begin{align*}
t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.497 |
|
| 18293 |
\begin{align*}
y+\left (y x +x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.498 |
|
| 18294 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.500 |
|
| 18295 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.501 |
|
| 18296 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=5 \operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
5.501 |
|
| 18297 |
\begin{align*}
8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.502 |
|
| 18298 |
\begin{align*}
y^{\prime \prime }+9 y&=\sec \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.504 |
|
| 18299 |
\begin{align*}
y^{\prime }+2 y x&=2 x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.504 |
|
| 18300 |
\begin{align*}
\left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.506 |
|