| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 18701 |
\begin{align*}
y^{2}-2 y x +6 x -\left (x^{2}-2 y x +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.912 |
|
| 18702 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.913 |
|
| 18703 |
\begin{align*}
\frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
5.913 |
|
| 18704 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=2 \left (x -1\right )^{2} {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.915 |
|
| 18705 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.915 |
|
| 18706 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=22 x +24 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.916 |
|
| 18707 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {y^{2}}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.918 |
|
| 18708 |
\begin{align*}
y^{\prime }&=\frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.919 |
|
| 18709 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.919 |
|
| 18710 |
\begin{align*}
y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
5.921 |
|
| 18711 |
\begin{align*}
x^{3} y^{\prime }&=y \left (y+x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.924 |
|
| 18712 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.925 |
|
| 18713 |
\begin{align*}
y^{\prime }&=\frac {-2 x -y+1+y^{2} x^{2}+2 x^{3} y+x^{4}+x^{3} y^{3}+3 y^{2} x^{4}+3 x^{5} y+x^{6}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.927 |
|
| 18714 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.927 |
|
| 18715 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.927 |
|
| 18716 |
\begin{align*}
y y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.927 |
|
| 18717 |
\begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.930 |
|
| 18718 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.931 |
|
| 18719 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.931 |
|
| 18720 |
\begin{align*}
y+7+\left (2 x +y+3\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.932 |
|
| 18721 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.935 |
|
| 18722 |
\begin{align*}
y^{\prime } x&=2 x +3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.935 |
|
| 18723 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| 18724 |
\begin{align*}
{y^{\prime }}^{2}&=a^{2} y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.938 |
|
| 18725 |
\begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| 18726 |
\begin{align*}
y^{\prime }+\cos \left (x \right ) y&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| 18727 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.945 |
|
| 18728 |
\begin{align*}
y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.949 |
|
| 18729 |
\begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.953 |
|
| 18730 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.955 |
|
| 18731 |
\begin{align*}
\left (3+2 x +4 y\right ) y^{\prime }&=x +2 y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.956 |
|
| 18732 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.957 |
|
| 18733 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.960 |
|
| 18734 |
\begin{align*}
2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.961 |
|
| 18735 |
\begin{align*}
\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.961 |
|
| 18736 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.961 |
|
| 18737 |
\begin{align*}
\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
5.965 |
|
| 18738 |
\begin{align*}
x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.967 |
|
| 18739 |
\begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.967 |
|
| 18740 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| 18741 |
\begin{align*}
\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| 18742 |
\begin{align*}
y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| 18743 |
\begin{align*}
y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.969 |
|
| 18744 |
\begin{align*}
x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.969 |
|
| 18745 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.969 |
|
| 18746 |
\begin{align*}
y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.969 |
|
| 18747 |
\begin{align*}
{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.970 |
|
| 18748 |
\begin{align*}
f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.970 |
|
| 18749 |
\begin{align*}
x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.971 |
|
| 18750 |
\begin{align*}
\left (a x +b y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.972 |
|
| 18751 |
\begin{align*}
y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.972 |
|
| 18752 |
\begin{align*}
\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
5.974 |
|
| 18753 |
\begin{align*}
y^{\prime }&=-\frac {x +2 y}{y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.974 |
|
| 18754 |
\begin{align*}
{\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.976 |
|
| 18755 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.976 |
|
| 18756 |
\begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.977 |
|
| 18757 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.977 |
|
| 18758 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.978 |
|
| 18759 |
\begin{align*}
y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.978 |
|
| 18760 |
\begin{align*}
y^{\prime \prime } x -{y^{\prime }}^{3}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.979 |
|
| 18761 |
\begin{align*}
\sqrt {y}+\left (x^{2}+4\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.980 |
|
| 18762 |
\begin{align*}
t^{2} y^{\prime \prime }-6 y^{\prime } t +\sin \left (2 t \right ) y&=\ln \left (t \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.986 |
|
| 18763 |
\begin{align*}
x +y-2+\left (1-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.987 |
|
| 18764 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.987 |
|
| 18765 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.988 |
|
| 18766 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.990 |
|
| 18767 |
\begin{align*}
\left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
5.990 |
|
| 18768 |
\begin{align*}
1+y^{2}-y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.990 |
|
| 18769 |
\begin{align*}
y^{2}+\left (-x^{3}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.991 |
|
| 18770 |
\begin{align*}
\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime }&=2 \,{\mathrm e}^{-2 x} x -\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.992 |
|
| 18771 |
\begin{align*}
y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.992 |
|
| 18772 |
\begin{align*}
y^{\prime } x&=y+2 \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.995 |
|
| 18773 |
\begin{align*}
y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.995 |
|
| 18774 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.995 |
|
| 18775 |
\begin{align*}
x^{2} \left (1-x \right ) y^{\prime }&=x \left (-x +2\right ) y-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.996 |
|
| 18776 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.997 |
|
| 18777 |
\begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.997 |
|
| 18778 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.998 |
|
| 18779 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.999 |
|
| 18780 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
5.999 |
|
| 18781 |
\begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.000 |
|
| 18782 |
\begin{align*}
\left (b \,x^{2}+a \right ) y^{\prime }&=A +B y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.001 |
|
| 18783 |
\begin{align*}
3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.002 |
|
| 18784 |
\begin{align*}
y-\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.002 |
|
| 18785 |
\begin{align*}
y y^{\prime } x&=\left (1+y\right ) \left (1-x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.003 |
|
| 18786 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.003 |
|
| 18787 |
\begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.004 |
|
| 18788 |
\begin{align*}
y^{\prime }&=\frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.005 |
|
| 18789 |
\begin{align*}
y^{\prime }&=\sqrt {1+6 x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.006 |
|
| 18790 |
\begin{align*}
y^{\prime }&=\frac {-x y^{2}+x^{3}-x -y^{6}+3 x^{2} y^{4}-3 y^{2} x^{4}+x^{6}}{\left (-y^{2}+x^{2}-1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.007 |
|
| 18791 |
\begin{align*}
y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
6.008 |
|
| 18792 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| 18793 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&={\mathrm e}^{t}+\delta \left (-2+t \right )+\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
6.013 |
|
| 18794 |
\begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.016 |
|
| 18795 |
\begin{align*}
\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.017 |
|
| 18796 |
\begin{align*}
5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.018 |
|
| 18797 |
\begin{align*}
x^{\prime }+x&=4 t \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.018 |
|
| 18798 |
\begin{align*}
y^{\prime }&=\frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
6.020 |
|
| 18799 |
\begin{align*}
y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.020 |
|
| 18800 |
\begin{align*}
y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
6.023 |
|