2.3.188 Problems 18701 to 18800

Table 2.907: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18701

24186

\begin{align*} y^{2}-2 y x +6 x -\left (x^{2}-2 y x +2\right ) y^{\prime }&=0 \\ \end{align*}

5.912

18702

8972

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\ \end{align*}

5.913

18703

21608

\begin{align*} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

5.913

18704

1831

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=2 \left (x -1\right )^{2} {\mathrm e}^{x} \\ \end{align*}

5.915

18705

14288

\begin{align*} x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

5.915

18706

16600

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=22 x +24 \\ \end{align*}

5.916

18707

6983

\begin{align*} y^{\prime }+\frac {y}{x}&=\frac {y^{2}}{x} \\ y \left (-1\right ) &= 1 \\ \end{align*}

5.918

18708

3600

\begin{align*} y^{\prime }&=\frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \\ \end{align*}

5.919

18709

20556

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=a x \\ \end{align*}

5.919

18710

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

5.921

18711

4970

\begin{align*} x^{3} y^{\prime }&=y \left (y+x^{2}\right ) \\ \end{align*}

5.924

18712

21485

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

5.925

18713

12190

\begin{align*} y^{\prime }&=\frac {-2 x -y+1+y^{2} x^{2}+2 x^{3} y+x^{4}+x^{3} y^{3}+3 y^{2} x^{4}+3 x^{5} y+x^{6}}{x} \\ \end{align*}

5.927

18714

12440

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\ \end{align*}

5.927

18715

20495

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

5.927

18716

21791

\begin{align*} y y^{\prime }+x&=0 \\ \end{align*}

5.927

18717

8752

\begin{align*} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

5.930

18718

18249

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}

5.931

18719

24648

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

5.931

18720

6921

\begin{align*} y+7+\left (2 x +y+3\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

5.932

18721

12701

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\ \end{align*}

5.935

18722

19281

\begin{align*} y^{\prime } x&=2 x +3 y \\ \end{align*}

5.935

18723

18772

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ \end{align*}

5.936

18724

5369

\begin{align*} {y^{\prime }}^{2}&=a^{2} y^{n} \\ \end{align*}

5.938

18725

17067

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \\ \end{align*}

5.944

18726

20285

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=y^{n} \sin \left (2 x \right ) \\ \end{align*}

5.944

18727

8982

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y&=x \\ \end{align*}

5.945

18728

12305

\begin{align*} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y&=0 \\ \end{align*}

5.949

18729

19474

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

5.953

18730

14287

\begin{align*} x^{\prime \prime }+x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

5.955

18731

4320

\begin{align*} \left (3+2 x +4 y\right ) y^{\prime }&=x +2 y+1 \\ \end{align*}

5.956

18732

18345

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

5.957

18733

10159

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

5.960

18734

3009

\begin{align*} 2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime }&=0 \\ \end{align*}

5.961

18735

4318

\begin{align*} \left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\ \end{align*}

5.961

18736

22971

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\ \end{align*}

5.961

18737

9387

\begin{align*} \left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

5.965

18738

4883

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\ \end{align*}

5.967

18739

8377

\begin{align*} y^{\prime }&=y^{2}-4 \\ y \left (0\right ) &= -2 \\ \end{align*}

5.967

18740

2559

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

5.968

18741

3524

\begin{align*} \left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c&=0 \\ \end{align*}

5.968

18742

20272

\begin{align*} y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

5.968

18743

13336

\begin{align*} y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\ \end{align*}

5.969

18744

15501

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

5.969

18745

16514

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

5.969

18746

17513

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \\ \end{align*}

5.969

18747

9736

\begin{align*} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

5.970

18748

11563

\begin{align*} f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right )&=0 \\ \end{align*}

5.970

18749

736

\begin{align*} x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\ \end{align*}

5.971

18750

5118

\begin{align*} \left (a x +b y\right ) y^{\prime }+y&=0 \\ \end{align*}

5.972

18751

19078

\begin{align*} y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\ \end{align*}

5.972

18752

9531

\begin{align*} \left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

5.974

18753

23222

\begin{align*} y^{\prime }&=-\frac {x +2 y}{y} \\ y \left (1\right ) &= 1 \\ \end{align*}

5.974

18754

6904

\begin{align*} {\mathrm e}^{\frac {y}{x}} x -y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

5.976

18755

7064

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\ \end{align*}

5.976

18756

8380

\begin{align*} y^{\prime } x&=y^{2}-y \\ y \left (0\right ) &= 0 \\ \end{align*}

5.977

18757

8980

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=0 \\ \end{align*}

5.977

18758

1827

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\ \end{align*}

5.978

18759

6989

\begin{align*} y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\ \end{align*}

5.978

18760

21759

\begin{align*} y^{\prime \prime } x -{y^{\prime }}^{3}-y^{\prime }&=0 \\ \end{align*}

5.979

18761

7561

\begin{align*} \sqrt {y}+\left (x^{2}+4\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ \end{align*}

5.980

18762

15255

\begin{align*} t^{2} y^{\prime \prime }-6 y^{\prime } t +\sin \left (2 t \right ) y&=\ln \left (t \right ) \\ \end{align*}

5.986

18763

17918

\begin{align*} x +y-2+\left (1-x \right ) y^{\prime }&=0 \\ \end{align*}

5.987

18764

25721

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

5.987

18765

8235

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (-1\right ) &= 1 \\ \end{align*}

5.988

18766

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

5.990

18767

13910

\begin{align*} \left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\ \end{align*}

5.990

18768

20682

\begin{align*} 1+y^{2}-y y^{\prime } x&=0 \\ \end{align*}

5.990

18769

22458

\begin{align*} y^{2}+\left (-x^{3}+y x \right ) y^{\prime }&=0 \\ \end{align*}

5.991

18770

5093

\begin{align*} \left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime }&=2 \,{\mathrm e}^{-2 x} x -\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \\ \end{align*}

5.992

18771

5901

\begin{align*} y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

5.992

18772

107

\begin{align*} y^{\prime } x&=y+2 \sqrt {y x} \\ \end{align*}

5.995

18773

11311

\begin{align*} y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y&=0 \\ \end{align*}

5.995

18774

16509

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

5.995

18775

4987

\begin{align*} x^{2} \left (1-x \right ) y^{\prime }&=x \left (-x +2\right ) y-y^{2} \\ \end{align*}

5.996

18776

18727

\begin{align*} y^{\prime \prime }+y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

5.997

18777

22484

\begin{align*} y^{\prime } y^{\prime \prime }&=1 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

5.997

18778

17780

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

5.998

18779

4401

\begin{align*} y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\ \end{align*}

5.999

18780

10454

\begin{align*} x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

5.999

18781

5221

\begin{align*} \left (3 x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\ \end{align*}

6.000

18782

4962

\begin{align*} \left (b \,x^{2}+a \right ) y^{\prime }&=A +B y^{2} \\ \end{align*}

6.001

18783

6918

\begin{align*} 3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime }&=0 \\ \end{align*}

6.002

18784

23198

\begin{align*} y-\left (x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

6.002

18785

7869

\begin{align*} y y^{\prime } x&=\left (1+y\right ) \left (1-x \right ) \\ \end{align*}

6.003

18786

20334

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

6.003

18787

15417

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

6.004

18788

11974

\begin{align*} y^{\prime }&=\frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \\ \end{align*}

6.005

18789

10318

\begin{align*} y^{\prime }&=\sqrt {1+6 x +y} \\ \end{align*}

6.006

18790

12182

\begin{align*} y^{\prime }&=\frac {-x y^{2}+x^{3}-x -y^{6}+3 x^{2} y^{4}-3 y^{2} x^{4}+x^{6}}{\left (-y^{2}+x^{2}-1\right ) y} \\ \end{align*}

6.007

18791

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

6.008

18792

17511

\begin{align*} y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\ \end{align*}

6.010

18793

9651

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&={\mathrm e}^{t}+\delta \left (-2+t \right )+\delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

6.013

18794

9162

\begin{align*} y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\ \end{align*}

6.016

18795

3602

\begin{align*} \left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c&=0 \\ \end{align*}

6.017

18796

6160

\begin{align*} 5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

6.018

18797

21021

\begin{align*} x^{\prime }+x&=4 t \\ x \left (1\right ) &= 0 \\ \end{align*}

6.018

18798

12035

\begin{align*} y^{\prime }&=\frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (x +1\right )} \\ \end{align*}

6.020

18799

21874

\begin{align*} y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\ \end{align*}

6.020

18800

13454

\begin{align*} y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \\ \end{align*}

6.023