| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }-4 y&=5 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
72.784 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
20.273 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
72.963 |
|
| \begin{align*}
y^{\prime \prime }+y x&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.548 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
64.438 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=5 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
23.077 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=2 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-3 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.554 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=x_{2}-x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=-4 x_{1}-6 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{2} \\
x_{2}^{\prime }&=-2 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-3 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2}+3 x_{3} \\
x_{3}^{\prime }&=-x_{2}-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{2} \\
x_{2}^{\prime }&=x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+5 x_{2} \\
x_{2}^{\prime }&=-x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}+4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+5 \,{\mathrm e}^{4 t} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.914 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+t \\
x_{2}^{\prime }&=-2 x_{1}+x_{2}+1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.783 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{2 t} \\
x_{2}^{\prime }&=3 x_{1}-x_{2}+5 \,{\mathrm e}^{2 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.083 |
|
| \begin{align*}
x_{1}^{\prime }&=-\tan \left (t \right ) x_{1}+3 \cos \left (t \right )^{2} \\
x_{2}^{\prime }&=x_{1}+\tan \left (t \right ) x_{2}+2 \sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 4 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.070 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-b x_{1}-a x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.055 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{2} \\
x_{2}^{\prime }&=-3 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -2 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{2}-x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+x_{2} \\
x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{t} \\
x_{2}^{\prime }&=x_{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.046 |
|
| \begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{t}+t x_{2} \\
x_{2}^{\prime }&=-\frac {x_{1}}{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.053 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}-7 x_{2} \\
x_{2}^{\prime }&=-x_{1}+4 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
x_{1}^{\prime }&=-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=5 x_{1}-5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.715 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=5 x_{2}-7 x_{3} \\
x_{3}^{\prime }&=2 x_{2}-4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.823 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=x_{1}+5 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+6 x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.736 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-x_{1} \\
x_{3}^{\prime }&=5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+3 x_{3} \\
x_{2}^{\prime }&=-4 x_{2} \\
x_{3}^{\prime }&=-3 x_{1}+2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+6 x_{3} \\
x_{2}^{\prime }&=-2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=-x_{1}-2 x_{2}-4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{2}+x_{3} \\
x_{2}^{\prime }&=-2 x_{1}-x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{3} \\
x_{2}^{\prime }&=-3 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.162 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{3}^{\prime }&=-x_{1}+x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+3 x_{3}+4 x_{4} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
x_{3}^{\prime }&=4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \\
x_{4}^{\prime }&=7 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-x_{1} \\
x_{3}^{\prime }&=-x_{4} \\
x_{4}^{\prime }&=x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+4 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-6 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.718 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
x_{2}^{\prime }&=3 x_{1}+x_{2} \\
x_{3}^{\prime }&=2 x_{1}-x_{2}+3 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -4 \\
x_{2} \left (0\right ) &= 4 \\
x_{3} \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.892 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{2} \\
x_{2}^{\prime }&=-4 x_{1} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=-b x_{1}-a x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.730 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+4 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+2 x_{2}-x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+3 x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1} \\
x_{2}^{\prime }&=x_{1}-3 x_{2}-x_{3} \\
x_{3}^{\prime }&=-x_{1}+x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
x_{1}^{\prime }&=15 x_{1}-32 x_{2}+12 x_{3} \\
x_{2}^{\prime }&=8 x_{1}-17 x_{2}+6 x_{3} \\
x_{3}^{\prime }&=-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.828 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
x_{3}^{\prime }&=x_{2}+4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2} \\
x_{2}^{\prime }&=-x_{1}+5 x_{2} \\
x_{3}^{\prime }&=4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}-x_{1} \\
x_{2}^{\prime }&=-2 x_{1}-3 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=x_{1} \\
x_{3}^{\prime }&=x_{1}+2 x_{3}+x_{4} \\
x_{4}^{\prime }&=x_{2}+2 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.457 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{3}^{\prime }&=x_{1}+x_{3}+x_{4} \\
x_{4}^{\prime }&=x_{2}+x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.208 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=x_{1} \\
x_{3}^{\prime }&=x_{1}-x_{4} \\
x_{4}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}-4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}-x_{2}+4 x_{3} \\
x_{2}^{\prime }&=-x_{2} \\
x_{3}^{\prime }&=-x_{1}-3 x_{2}+2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -2 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.755 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-3 x_{2}+{\mathrm e}^{2 t} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}+{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-x_{2} \\
x_{2}^{\prime }&=-x_{1}+2 x_{2}+4 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.822 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2}+t \,{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=3 x_{2}+{\mathrm e}^{3 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+x_{2}+20 \,{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=3 x_{1}+x_{2}+12 \,{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.092 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+2 x_{2}+54 t \,{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=-2 x_{1}+4 x_{2}+9 \,{\mathrm e}^{3 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.870 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+4 x_{2}+8 \sin \left (2 t \right ) \\
x_{2}^{\prime }&=-2 x_{1}-2 x_{2}+8 \cos \left (2 t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.387 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}-3 \,{\mathrm e}^{t} \\
x_{2}^{\prime }&=-2 x_{1}-x_{2}+6 \,{\mathrm e}^{t} t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.732 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-{\mathrm e}^{t} \\
x_{2}^{\prime }&=2 x_{1}-3 x_{2}+2 x_{3}+6 \,{\mathrm e}^{-t} \\
x_{3}^{\prime }&=x_{1}-2 x_{2}+2 x_{3}+{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.214 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-2 x_{2}+2 x_{3}-{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=2 x_{1}+4 x_{2}-x_{3}+4 \,{\mathrm e}^{3 t} \\
x_{3}^{\prime }&=3 x_{3}+3 \,{\mathrm e}^{3 t} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.140 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-3 x_{2}+34 \sin \left (t \right ) \\
x_{2}^{\prime }&=-4 x_{1}-2 x_{2}+17 \cos \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1} \\
x_{2}^{\prime }&=3 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=x_{2}-8 x_{3} \\
x_{3}^{\prime }&=2 x_{2}-7 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.704 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+3 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+3 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=2 x_{2}+2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
16.054 |
|
| \begin{align*}
x_{1}^{\prime }&=-8 x_{1}+6 x_{2}-3 x_{3} \\
x_{2}^{\prime }&=-12 x_{1}+10 x_{2}-3 x_{3} \\
x_{3}^{\prime }&=-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.784 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=6 x_{2}-7 x_{3}+3 x_{4} \\
x_{3}^{\prime }&=3 x_{3}-x_{4} \\
x_{4}^{\prime }&=-4 x_{2}+9 x_{3}-3 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.184 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{2} \\
x_{2}^{\prime }&=x_{1} \\
x_{3}^{\prime }&=x_{2}-x_{4} \\
x_{4}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| \begin{align*}
x_{1}^{\prime }&=\left (2 t -1\right ) x_{1} \\
x_{2}^{\prime }&={\mathrm e}^{-t^{2}+t} x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.059 |
|
| \begin{align*}
x_{1}^{\prime }&=t \cot \left (t^{2}\right ) x_{1}+\frac {t \cos \left (t^{2}\right ) x_{3}}{2} \\
x_{2}^{\prime }&=\frac {x_{2}}{t}-x_{3}+2-t \sin \left (t \right ) \\
x_{3}^{\prime }&=\csc \left (t^{2}\right ) x_{1}+x_{2}-x_{3}+1-t \cos \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.089 |
|
| \begin{align*}
x_{1}^{\prime }&=-6 x_{1}+x_{2} \\
x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
x_{1}^{\prime }&=9 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=5 x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
x_{1}^{\prime }&=10 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
x_{1}^{\prime }&=-8 x_{1}+5 x_{2} \\
x_{2}^{\prime }&=-5 x_{1}+2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+4 x_{3} \\
x_{2}^{\prime }&=2 x_{2} \\
x_{3}^{\prime }&=-4 x_{1}-5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.740 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-x_{2} \\
x_{2}^{\prime }&=4 x_{1}-7 x_{2} \\
x_{3}^{\prime }&=6 x_{1}+6 x_{2}+4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+13 x_{2} \\
x_{2}^{\prime }&=-x_{1}-3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-10 x_{2} \\
x_{2}^{\prime }&=5 x_{1}+11 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.810 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}-5 x_{2}+x_{3} \\
x_{2}^{\prime }&=4 x_{1}-9 x_{2}-x_{3} \\
x_{3}^{\prime }&=3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.233 |
|