2.2.38 Problems 3701 to 3800

Table 2.89: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3701

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.076

3702

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.069

3703

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.075

3704

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.080

3705

\begin{align*} y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

3706

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.320

3707

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.949

3708

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.169

3709

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.178

3710

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=18 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

39.216

3711

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=4 x^{2}+5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.038

3712

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.160

3713

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y&=24 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.157

3714

\begin{align*} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }&=6 \,{\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.153

3715

\begin{align*} y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.741

3716

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=5 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.554

3717

\begin{align*} y^{\prime \prime }+4 y&=8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

69.869

3718

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.998

3719

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

87.094

3720

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y&=4 x^{2} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.174

3721

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=9 \,{\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.184

3722

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.343

3723

\begin{align*} y^{\prime \prime }+9 y&=5 \cos \left (2 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.822

3724

\begin{align*} y^{\prime \prime }-y&=9 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

97.671

3725

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-10 \sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.847

3726

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=4 \cos \left (x \right )-2 \sin \left (x \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.734

3727

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=\frac {F_{0} \cos \left (\omega t \right )}{m} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

95.600

3728

\begin{align*} y^{\prime \prime }-4 y^{\prime }+6 y&=7 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

71.072

3729

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=4 x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.181

3730

\begin{align*} y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime }&=5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.239

3731

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

44.490

3732

\begin{align*} y^{\prime \prime }+6 y&=\sin \left (x \right )^{2} \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.411

3733

\begin{align*} y^{\prime \prime }-16 y&=20 \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.386

3734

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=50 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

71.044

3735

\begin{align*} y^{\prime \prime }-y&=10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

69.818

3736

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=169 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

71.243

3737

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=40 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

34.865

3738

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (2 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.891

3739

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=2 \sin \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

32.904

3740

\begin{align*} y^{\prime \prime }-4 y&=100 \sin \left (x \right ) {\mathrm e}^{x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

70.605

3741

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

62.112

3742

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

66.270

3743

\begin{align*} y^{\prime \prime }+16 y&=34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

79.122

3744

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

15.505

3745

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.898

3746

\begin{align*} y^{\prime \prime }+9 y&=18 \sec \left (3 x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

15.603

3747

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

84.765

3748

\begin{align*} y^{\prime \prime }-4 y&=\frac {8}{{\mathrm e}^{2 x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

72.696

3749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

57.125

3750

\begin{align*} y^{\prime \prime }+9 y&=\frac {36}{4-\cos \left (3 x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

13.510

3751

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

85.769

3752

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

46.011

3753

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )+4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.021

3754

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )+2 x^{2}+5 x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.509

3755

\begin{align*} y^{\prime \prime }-y&=2 \tanh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.642

3756

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{x m}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

82.695

3757

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

64.413

3758

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

71.471

3759

\begin{align*} y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

82.218

3760

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

91.543

3761

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.795

3762

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=\frac {2 \,{\mathrm e}^{x}}{x^{2}} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.309

3763

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=36 \,{\mathrm e}^{2 x} \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.368

3764

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=\frac {2 \,{\mathrm e}^{-x}}{x^{2}+1} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.374

3765

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }&=12 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.199

3766

\begin{align*} y^{\prime \prime }-9 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.263

3767

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

40.089

3768

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

78.591

3769

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

42.159

3770

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=5 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

168.477

3771

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.523

3772

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

9.232

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6.865

3774

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=9 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.188

3775

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=8 x \ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.542

3776

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.474

3777

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.494

3778

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\frac {x^{2}}{\ln \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.334

3779

\begin{align*} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y&=x^{m} \ln \left (x \right )^{k} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.681

3780

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= \sqrt {2} \\ y^{\prime }\left (1\right ) &= 3 \sqrt {2} \\ \end{align*}

[[_Emden, _Fowler]]

5.879

3781

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +25 y&=0 \\ y \left (1\right ) &= \frac {3 \sqrt {3}}{2} \\ y^{\prime }\left (1\right ) &= {\frac {15}{2}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.559

3782

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.157

3783

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.162

3784

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.176

3785

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.177

3786

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.188

3787

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.188

3788

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.287

3789

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+2 y&=8 x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

3790

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=8 x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

3791

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=15 \,{\mathrm e}^{3 x} \sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.348

3792

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

3793

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=\sqrt {x}\, \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.268

3794

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.091

3795

\begin{align*} y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.095

3796

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=4 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.721

3797

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

39.257

3798

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.195

3799

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime }&=\sin \left (4 x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.210

3800

\begin{align*} y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y&=8 \,{\mathrm e}^{-x}+1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.216