2.2.45 Problems 4401 to 4500

Table 2.91: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4401

\[ {}2 \sqrt {x y}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.947

4402

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.367

4403

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

1.601

4404

\[ {}y-1-x y+y^{\prime } x = 0 \]

[_linear]

1.130

4405

\[ {}y^{\prime } x -y = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.408

4406

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.378

4407

\[ {}y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.533

4408

\[ {}2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

2.945

4409

\[ {}y^{\prime } = \frac {1}{x y+x^{3} y^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.623

4410

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.879

4411

\[ {}{\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

[_Bernoulli]

1.687

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

1.733

4413

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.495

4414

\[ {}y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.426

4415

\[ {}y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[_rational]

1.570

4416

\[ {}y^{\prime } x = y+\sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

52.388

4417

\[ {}2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

12.988

4418

\[ {}\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.299

4419

\[ {}y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.094

4420

\[ {}\left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

7.116

4421

\[ {}2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.192

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.932

4423

\[ {}x^{2} \left (y^{\prime } x -y\right ) = y \left (x +y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.027

4424

\[ {}y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.799

4425

\[ {}x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.490

4426

\[ {}x y^{\prime \prime } = x +y^{\prime } \]

[[_2nd_order, _missing_y]]

1.209

4427

\[ {}y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.918

4428

\[ {}y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

1.428

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

1.413

4430

\[ {}2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.486

4431

\[ {}2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.070

4432

\[ {}y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.406

4433

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

[[_1st_order, _with_linear_symmetries], _Chini]

2.584

4434

\[ {}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.670

4435

\[ {}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.390

4436

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.100

4437

\[ {}y \sin \left (x \right )+\cos \left (x \right )^{2}-y^{\prime } \cos \left (x \right ) = 0 \]

[_linear]

2.344

4438

\[ {}y \left (6 y^{2}-x -1\right )+2 y^{\prime } x = 0 \]

[_rational, _Bernoulli]

1.326

4439

\[ {}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

[_quadrature]

0.876

4440

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) = 0 \]

[_linear]

3.583

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.099

4442

\[ {}2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-x^{2} y^{2}-3 x \right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

4.438

4443

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.892

4444

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.076

4445

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

[[_3rd_order, _missing_x]]

0.122

4446

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.079

4447

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.085

4448

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.089

4449

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.083

4450

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

0.086

4451

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.143

4452

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.082

4453

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

0.078

4454

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.076

4455

\[ {}y^{\left (6\right )}-64 y = 0 \]

[[_high_order, _missing_x]]

0.114

4456

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17.184

4457

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.984

4458

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17.142

4459

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.665

4460

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18.240

4461

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.910

4462

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

1.046

4463

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

0.157

4464

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

[[_high_order, _missing_y]]

0.170

4465

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.147

4466

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

0.172

4467

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

4468

\[ {}y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2} \]

[[_3rd_order, _missing_y]]

0.126

4469

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x \]

[[_high_order, _missing_y]]

0.133

4470

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.406

4471

\[ {}y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.171

4472

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.209

4473

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.175

4474

\[ {}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

77.629

4475

\[ {}y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x} \]

[[_high_order, _with_linear_symmetries]]

0.140

4476

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.204

4477

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.696

4478

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.125

4479

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.566

4480

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.051

4481

\[ {}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.922

4482

\[ {}y^{\prime \prime }-y = 12 x^{2} {\mathrm e}^{x}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.674

4483

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.290

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

2.205

4485

\[ {}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.664

4486

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.515

4487

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.030

4488

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.212

4489

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.165

4490

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.161

4491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.164

4492

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.166

4493

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \sin \left (x \right )+50 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.203

4494

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.166

4495

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

0.202

4496

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

0.165

4497

\[ {}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.350

4498

\[ {}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.807

4499

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.435

4500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.710