2.3.199 Problems 19801 to 19900

Table 2.929: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19801

18818

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\ \end{align*}

7.657

19802

15301

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=x \\ \end{align*}

7.658

19803

9237

\begin{align*} 2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\ \end{align*}

7.662

19804

13806

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +b \left (a \,x^{n}-1\right ) y&=0 \\ \end{align*}

7.664

19805

16351

\begin{align*} \sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

7.665

19806

1304

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

7.666

19807

3039

\begin{align*} x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

7.668

19808

4932

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2}&=0 \\ \end{align*}

7.670

19809

16525

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

7.670

19810

18792

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

7.670

19811

19931

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\ \end{align*}

7.670

19812

13748

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

7.672

19813

16286

\begin{align*} y^{\prime }&=\frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \\ \end{align*}

7.672

19814

16685

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=64 x^{2} \ln \left (x \right ) \\ \end{align*}

7.672

19815

16285

\begin{align*} y^{\prime }&=\frac {1}{\left (3 x +3 y+2\right )^{2}} \\ \end{align*}

7.674

19816

18183

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=-2 \\ \end{align*}

7.674

19817

14188

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2}&=0 \\ \end{align*}

7.675

19818

5598

\begin{align*} a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right )&=0 \\ \end{align*}

7.681

19819

14227

\begin{align*} x^{\prime }&=2 t x^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

7.681

19820

19317

\begin{align*} y^{\prime } x +y+3 x^{3} y^{4} y^{\prime }&=0 \\ \end{align*}

7.683

19821

23354

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

7.684

19822

11654

\begin{align*} \left (x \sin \left (y x \right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (y x \right )+\cos \left (x +y\right )+\cos \left (x \right )&=0 \\ \end{align*}

7.686

19823

8977

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{2} \\ \end{align*}

7.692

19824

2941

\begin{align*} \left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4}&=0 \\ \end{align*}

7.693

19825

22760

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=\sqrt {x}+\frac {1}{\sqrt {x}} \\ \end{align*}

7.694

19826

15784

\begin{align*} y^{\prime }&=t y^{{1}/{3}} \\ \end{align*}

7.697

19827

14549

\begin{align*} 3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime }&=0 \\ \end{align*}

7.701

19828

12450

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2}&=0 \\ \end{align*}

7.704

19829

5657

\begin{align*} y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\ \end{align*}

7.706

19830

21386

\begin{align*} y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\ \end{align*}

7.707

19831

4886

\begin{align*} x^{2} y^{\prime }&=2 y \left (x -y^{2}\right ) \\ \end{align*}

7.708

19832

12521

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime }&=0 \\ \end{align*}

7.708

19833

7546

\begin{align*} y-x +\left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

7.709

19834

20246

\begin{align*} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\ \end{align*}

7.709

19835

22406

\begin{align*} y^{\prime }&=\frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

7.709

19836

11417

\begin{align*} y^{\prime } x -y \ln \left (y\right )&=0 \\ \end{align*}

7.710

19837

6044

\begin{align*} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

7.714

19838

13271

\begin{align*} x^{2} \left (a +x \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+x \alpha +\beta &=0 \\ \end{align*}

7.714

19839

200

\begin{align*} y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\ \end{align*}

7.717

19840

25508

\begin{align*} y^{\prime }&=-\frac {3 t^{2}+2 y^{2}}{4 t y+6 y^{2}} \\ \end{align*}

7.718

19841

2942

\begin{align*} y \left (-x^{2}+y\right )+x^{3} y^{\prime }&=0 \\ \end{align*}

7.724

19842

11444

\begin{align*} x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2}&=0 \\ \end{align*}

7.724

19843

7981

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

7.730

19844

21396

\begin{align*} y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\ \end{align*}

7.730

19845

4078

\begin{align*} y^{2} \left (x^{2}+1\right )+y+\left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

7.731

19846

12089

\begin{align*} y^{\prime }&=-\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \\ \end{align*}

7.731

19847

17777

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

7.732

19848

23980

\begin{align*} y^{\prime \prime }+\frac {327 y^{\prime }}{100}-\frac {21 y}{50}&=0 \\ \end{align*}

7.732

19849

14337

\begin{align*} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x&=4 t^{7} \\ \end{align*}

7.734

19850

14446

\begin{align*} \frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}}&=0 \\ \end{align*}

7.734

19851

20589

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} \\ \end{align*}

7.734

19852

12935

\begin{align*} y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2}&=0 \\ \end{align*}

7.739

19853

17733

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

7.740

19854

21801

\begin{align*} y y^{\prime }+x&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

7.740

19855

7456

\begin{align*} \cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime }&=0 \\ \end{align*}

7.742

19856

3066

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

7.744

19857

19313

\begin{align*} \frac {-y^{\prime } x +y}{\left (x +y\right )^{2}}+y^{\prime }&=1 \\ \end{align*}

7.744

19858

21965

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

7.745

19859

24469

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

7.747

19860

9585

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y&=0 \\ \end{align*}

7.757

19861

12225

\begin{align*} y^{\prime }&=\frac {-32 y x -8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}+96 a x y^{2}+12 x^{4} y+48 y a \,x^{3}+48 y a^{2} x^{2}+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \\ \end{align*}

7.757

19862

1199

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )-2 \sin \left (x \right ) y+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

7.758

19863

24867

\begin{align*} {y^{\prime }}^{2}+y y^{\prime }-x -1&=0 \\ \end{align*}

7.764

19864

8720

\begin{align*} y^{\prime }&=\frac {y}{x +y} \\ \end{align*}

7.767

19865

9328

\begin{align*} y^{\prime \prime }&=\tan \left (x \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

7.767

19866

7555

\begin{align*} y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\ y \left (1\right ) &= -4 \\ \end{align*}

7.768

19867

2971

\begin{align*} 2 y&=\left (y^{4}+x \right ) y^{\prime } \\ \end{align*}

7.769

19868

11351

\begin{align*} y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right )&=0 \\ \end{align*}

7.769

19869

20963

\begin{align*} y^{\prime }&=\frac {1+y}{2+x}+{\mathrm e}^{\frac {1+y}{2+x}} \\ \end{align*}

7.771

19870

21362

\begin{align*} x +2 y-1+3 \left (x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

7.771

19871

25745

\begin{align*} y^{\prime } x +y&=2 x \\ y \left (x_{0} \right ) &= 1 \\ \end{align*}

7.773

19872

8290

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (3\right ) &= 0 \\ \end{align*}

7.774

19873

25718

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (-1\right ) &= 1 \\ \end{align*}

7.774

19874

11539

\begin{align*} 2 y y^{\prime } x +2 y^{2}+1&=0 \\ \end{align*}

7.780

19875

1279

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

7.781

19876

19966

\begin{align*} 2 y^{2} x^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \\ \end{align*}

7.781

19877

10254

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\ \end{align*}

7.783

19878

24829

\begin{align*} 8 y&={y^{\prime }}^{2}+3 x^{2} \\ \end{align*}

7.783

19879

12023

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \\ \end{align*}

7.785

19880

23289

\begin{align*} \left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

7.786

19881

20132

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

7.789

19882

21054

\begin{align*} x^{\prime }&=4 t^{3} x^{4} \\ \end{align*}

7.793

19883

23883

\begin{align*} 2 x +2 y-3+\left (1-2 y+2 x \right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

7.793

19884

9783

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

7.794

19885

4816

\begin{align*} y^{\prime } x&=y-x \cot \left (\frac {y}{x}\right )^{2} \\ \end{align*}

7.796

19886

3648

\begin{align*} y^{\prime } x&=x \tan \left (\frac {y}{x}\right )+y \\ \end{align*}

7.798

19887

19772

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=y x \\ \end{align*}

7.798

19888

3000

\begin{align*} 2 y&=\left (x^{2} y^{4}+x \right ) y^{\prime } \\ y \left (1\right ) &= 1 \\ \end{align*}

7.811

19889

24412

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

7.812

19890

13798

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y&=0 \\ \end{align*}

7.815

19891

20962

\begin{align*} y^{\prime }&=\frac {1+y}{2+x}-{\mathrm e}^{\frac {1+y}{2+x}} \\ \end{align*}

7.815

19892

21346

\begin{align*} y^{\prime }&=-\frac {x}{y} \\ y \left (0\right ) &= a_{0} \\ \end{align*}

7.816

19893

17624

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

7.817

19894

16718

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

7.830

19895

24150

\begin{align*} \left (2 x +y\right ) y^{\prime }+x -2 y&=0 \\ \end{align*}

7.830

19896

24125

\begin{align*} y^{\prime }&=x y^{2} \\ \end{align*}

7.833

19897

14835

\begin{align*} t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x&=0 \\ \end{align*}

7.835

19898

21129

\begin{align*} x^{\prime \prime }+2 x^{\prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\infty \right ) &= a \\ \end{align*}

7.836

19899

2589

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

7.839

19900

21604

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y&=0 \\ \end{align*}

7.839