| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19801 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.657 |
|
| 19802 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.658 |
|
| 19803 |
\begin{align*}
2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.662 |
|
| 19804 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +b \left (a \,x^{n}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.664 |
|
| 19805 |
\begin{align*}
\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.665 |
|
| 19806 |
\begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.666 |
|
| 19807 |
\begin{align*}
x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.668 |
|
| 19808 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| 19809 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| 19810 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| 19811 |
\begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| 19812 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.672 |
|
| 19813 |
\begin{align*}
y^{\prime }&=\frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.672 |
|
| 19814 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=64 x^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.672 |
|
| 19815 |
\begin{align*}
y^{\prime }&=\frac {1}{\left (3 x +3 y+2\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.674 |
|
| 19816 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.674 |
|
| 19817 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.675 |
|
| 19818 |
\begin{align*}
a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.681 |
|
| 19819 |
\begin{align*}
x^{\prime }&=2 t x^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.681 |
|
| 19820 |
\begin{align*}
y^{\prime } x +y+3 x^{3} y^{4} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.683 |
|
| 19821 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
7.684 |
|
| 19822 |
\begin{align*}
\left (x \sin \left (y x \right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (y x \right )+\cos \left (x +y\right )+\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.686 |
|
| 19823 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.692 |
|
| 19824 |
\begin{align*}
\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.693 |
|
| 19825 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=\sqrt {x}+\frac {1}{\sqrt {x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.694 |
|
| 19826 |
\begin{align*}
y^{\prime }&=t y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.697 |
|
| 19827 |
\begin{align*}
3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.701 |
|
| 19828 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.704 |
|
| 19829 |
\begin{align*}
y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.706 |
|
| 19830 |
\begin{align*}
y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.707 |
|
| 19831 |
\begin{align*}
x^{2} y^{\prime }&=2 y \left (x -y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.708 |
|
| 19832 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.708 |
|
| 19833 |
\begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.709 |
|
| 19834 |
\begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.709 |
|
| 19835 |
\begin{align*}
y^{\prime }&=\frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.709 |
|
| 19836 |
\begin{align*}
y^{\prime } x -y \ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.710 |
|
| 19837 |
\begin{align*}
\left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.714 |
|
| 19838 |
\begin{align*}
x^{2} \left (a +x \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+x \alpha +\beta &=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.714 |
|
| 19839 |
\begin{align*}
y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.717 |
|
| 19840 |
\begin{align*}
y^{\prime }&=-\frac {3 t^{2}+2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.718 |
|
| 19841 |
\begin{align*}
y \left (-x^{2}+y\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.724 |
|
| 19842 |
\begin{align*}
x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.724 |
|
| 19843 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.730 |
|
| 19844 |
\begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.730 |
|
| 19845 |
\begin{align*}
y^{2} \left (x^{2}+1\right )+y+\left (2 y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.731 |
|
| 19846 |
\begin{align*}
y^{\prime }&=-\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.731 |
|
| 19847 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.732 |
|
| 19848 |
\begin{align*}
y^{\prime \prime }+\frac {327 y^{\prime }}{100}-\frac {21 y}{50}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.732 |
|
| 19849 |
\begin{align*}
t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x&=4 t^{7} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.734 |
|
| 19850 |
\begin{align*}
\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.734 |
|
| 19851 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.734 |
|
| 19852 |
\begin{align*}
y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.739 |
|
| 19853 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.740 |
|
| 19854 |
\begin{align*}
y y^{\prime }+x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.740 |
|
| 19855 |
\begin{align*}
\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.742 |
|
| 19856 |
\begin{align*}
2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.744 |
|
| 19857 |
\begin{align*}
\frac {-y^{\prime } x +y}{\left (x +y\right )^{2}}+y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.744 |
|
| 19858 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.745 |
|
| 19859 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.747 |
|
| 19860 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.757 |
|
| 19861 |
\begin{align*}
y^{\prime }&=\frac {-32 y x -8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}+96 a x y^{2}+12 x^{4} y+48 y a \,x^{3}+48 y a^{2} x^{2}+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.757 |
|
| 19862 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )-2 \sin \left (x \right ) y+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.758 |
|
| 19863 |
\begin{align*}
{y^{\prime }}^{2}+y y^{\prime }-x -1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.764 |
|
| 19864 |
\begin{align*}
y^{\prime }&=\frac {y}{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.767 |
|
| 19865 |
\begin{align*}
y^{\prime \prime }&=\tan \left (x \right ) \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.767 |
|
| 19866 |
\begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (1\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.768 |
|
| 19867 |
\begin{align*}
2 y&=\left (y^{4}+x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.769 |
|
| 19868 |
\begin{align*}
y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.769 |
|
| 19869 |
\begin{align*}
y^{\prime }&=\frac {1+y}{2+x}+{\mathrm e}^{\frac {1+y}{2+x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.771 |
|
| 19870 |
\begin{align*}
x +2 y-1+3 \left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.771 |
|
| 19871 |
\begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.773 |
|
| 19872 |
\begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (3\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.774 |
|
| 19873 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.774 |
|
| 19874 |
\begin{align*}
2 y y^{\prime } x +2 y^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.780 |
|
| 19875 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.781 |
|
| 19876 |
\begin{align*}
2 y^{2} x^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.781 |
|
| 19877 |
\begin{align*}
y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.783 |
|
| 19878 |
\begin{align*}
8 y&={y^{\prime }}^{2}+3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.783 |
|
| 19879 |
\begin{align*}
y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.785 |
|
| 19880 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.786 |
|
| 19881 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.789 |
|
| 19882 |
\begin{align*}
x^{\prime }&=4 t^{3} x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.793 |
|
| 19883 |
\begin{align*}
2 x +2 y-3+\left (1-2 y+2 x \right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.793 |
|
| 19884 |
\begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.794 |
|
| 19885 |
\begin{align*}
y^{\prime } x&=y-x \cot \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.796 |
|
| 19886 |
\begin{align*}
y^{\prime } x&=x \tan \left (\frac {y}{x}\right )+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.798 |
|
| 19887 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.798 |
|
| 19888 |
\begin{align*}
2 y&=\left (x^{2} y^{4}+x \right ) y^{\prime } \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.811 |
|
| 19889 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.812 |
|
| 19890 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.815 |
|
| 19891 |
\begin{align*}
y^{\prime }&=\frac {1+y}{2+x}-{\mathrm e}^{\frac {1+y}{2+x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.815 |
|
| 19892 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (0\right ) &= a_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
7.816 |
|
| 19893 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.817 |
|
| 19894 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.830 |
|
| 19895 |
\begin{align*}
\left (2 x +y\right ) y^{\prime }+x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.830 |
|
| 19896 |
\begin{align*}
y^{\prime }&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.833 |
|
| 19897 |
\begin{align*}
t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.835 |
|
| 19898 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (\infty \right ) &= a \\
\end{align*} |
✗ |
✓ |
✗ |
✓ |
7.836 |
|
| 19899 |
\begin{align*}
y^{\prime \prime }-y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.839 |
|
| 19900 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.839 |
|