2.3.198 Problems 19701 to 19800

Table 2.927: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19701

21930

\begin{align*} x y^{2}&=-y^{\prime } x +y \\ \end{align*}

7.444

19702

24127

\begin{align*} y \,{\mathrm e}^{2 x}-\left (4+{\mathrm e}^{2 x}\right ) y^{\prime }&=0 \\ \end{align*}

7.444

19703

13761

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\ \end{align*}

7.445

19704

4800

\begin{align*} y^{\prime } x&=a y+b \left (x^{2}+1\right ) y^{3} \\ \end{align*}

7.446

19705

24043

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\ \end{align*}

7.450

19706

17878

\begin{align*} \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

7.452

19707

23374

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

7.452

19708

24128

\begin{align*} 1&=b \left (\cos \left (y\right )+x \sin \left (y\right ) y^{\prime }\right ) \\ \end{align*}

7.452

19709

4805

\begin{align*} y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\ \end{align*}

7.455

19710

12276

\begin{align*} y^{\prime }&=\frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \\ \end{align*}

7.456

19711

20736

\begin{align*} \sin \left (y^{\prime } x \right ) \cos \left (y\right )&=\cos \left (y^{\prime } x \right ) \sin \left (y\right )+y^{\prime } \\ \end{align*}

7.457

19712

20690

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=x^{3} \cos \left (y\right )^{2} \\ \end{align*}

7.458

19713

20595

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

7.460

19714

10430

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\ \end{align*}

7.463

19715

5321

\begin{align*} 2 \left (x -y^{4}\right ) y^{\prime }&=y \\ \end{align*}

7.464

19716

10055

\begin{align*} a y^{2} y^{\prime \prime }+b y^{2}&=c \\ \end{align*}

7.470

19717

22015

\begin{align*} y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\ \end{align*}

7.473

19718

1306

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ \end{align*}

7.474

19719

9774

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

7.483

19720

17792

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

7.484

19721

19821

\begin{align*} \left (5 x -2 y+7\right ) y^{\prime }&=10 x -4 y+6 \\ \end{align*}

7.487

19722

15303

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\ \end{align*}

7.488

19723

11437

\begin{align*} x^{2} y^{\prime }-y^{2}-y x -x^{2}&=0 \\ \end{align*}

7.489

19724

24853

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

7.490

19725

21962

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

7.491

19726

20813

\begin{align*} y^{\prime }&=\frac {\sqrt {1-y^{2}}}{x} \\ \end{align*}

7.496

19727

8705

\begin{align*} -y+y^{\prime } x&=y y^{\prime } \\ \end{align*}

7.509

19728

24164

\begin{align*} x +\sin \left (\frac {y}{x}\right )^{2} \left (-y^{\prime } x +y\right )&=0 \\ \end{align*}

7.509

19729

1310

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\ \end{align*}

7.510

19730

18560

\begin{align*} y^{\prime }&=2 t y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

7.510

19731

20960

\begin{align*} x^{\prime }&=x-\frac {\mu x}{x^{2}+1} \\ \end{align*}

7.519

19732

20753

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

7.520

19733

3020

\begin{align*} \left (3 x +4 y\right ) y^{\prime }+2 x +y&=0 \\ \end{align*}

7.521

19734

22420

\begin{align*} y^{\prime }&=\frac {y-2 x}{-x +2 y} \\ y \left (1\right ) &= 2 \\ \end{align*}

7.525

19735

18808

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

7.527

19736

24410

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

7.527

19737

12239

\begin{align*} y^{\prime }&=\frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\ \end{align*}

7.529

19738

22398

\begin{align*} 2 x +3 y+4&=\left (4 x +6 y+1\right ) y^{\prime } \\ \end{align*}

7.530

19739

20828

\begin{align*} y&=2 y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

7.532

19740

2517

\begin{align*} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

7.533

19741

16979

\begin{align*} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

7.533

19742

19329

\begin{align*} \left (x +y\right ) y^{\prime }&=-x +y \\ \end{align*}

7.534

19743

23163

\begin{align*} y y^{\prime }-7 y&=6 x \\ \end{align*}

7.534

19744

13342

\begin{align*} y^{\prime }&=y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \\ \end{align*}

7.538

19745

17911

\begin{align*} x -y+y^{\prime } x&=0 \\ \end{align*}

7.538

19746

17635

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x^{2}} \\ \end{align*}

7.542

19747

13391

\begin{align*} y^{\prime }&=a y^{2}+b \tan \left (x \right ) y+c \\ \end{align*}

7.543

19748

6079

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

7.544

19749

20794

\begin{align*} y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y&={\mathrm e}^{6 x} \\ \end{align*}

7.545

19750

3456

\begin{align*} y^{\prime }-x y^{3}&=0 \\ \end{align*}

7.547

19751

16678

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=\frac {5}{x^{3}} \\ \end{align*}

7.547

19752

6919

\begin{align*} x +y+\left (3 x +3 y-4\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

7.549

19753

17731

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

7.557

19754

21398

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\ y \left (1\right ) &= -2 \\ \end{align*}

7.558

19755

5328

\begin{align*} x \left (x^{3}+y^{5}\right ) y^{\prime }&=\left (x^{3}-y^{5}\right ) y \\ \end{align*}

7.559

19756

15562

\begin{align*} y^{\prime }&=y x +\frac {1}{x^{2}+1} \\ y \left (-5\right ) &= 0 \\ \end{align*}

7.562

19757

23123

\begin{align*} y^{\prime }&=\sqrt {y} \\ y \left (1\right ) &= 1 \\ \end{align*}

7.564

19758

21997

\begin{align*} y y^{\prime }+x&=0 \\ \end{align*}

7.566

19759

13958

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

7.568

19760

11660

\begin{align*} {y^{\prime }}^{2}+a y+b \,x^{2}&=0 \\ \end{align*}

7.569

19761

22387

\begin{align*} x^{3}+y^{3}-y^{\prime } y^{2} x&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

7.569

19762

21863

\begin{align*} 2 {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \\ \end{align*}

7.570

19763

21428

\begin{align*} y^{\prime }&=\frac {x -2 y}{2 x -y} \\ \end{align*}

7.571

19764

11880

\begin{align*} y^{\prime }&=\frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \\ \end{align*}

7.572

19765

16524

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

7.573

19766

4920

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right )&=0 \\ \end{align*}

7.575

19767

24329

\begin{align*} y^{\prime } x&=y-y^{3} \cos \left (x \right ) \\ \end{align*}

7.576

19768

15966

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\ \end{align*}

7.580

19769

16423

\begin{align*} 2 x y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= \sqrt {3} \\ \end{align*}

7.588

19770

13743

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y&=0 \\ \end{align*}

7.591

19771

19075

\begin{align*} \left (x +2 y+1\right ) y^{\prime }&=3+2 x +4 y \\ \end{align*}

7.591

19772

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

7.592

19773

21555

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

7.592

19774

8310

\begin{align*} y y^{\prime }&=-x \\ y \left (0\right ) &= 4 \\ \end{align*}

7.593

19775

18777

\begin{align*} 9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\ \end{align*}

7.593

19776

3268

\begin{align*} y^{\prime \prime }+2 {y^{\prime }}^{2}&=2 \\ \end{align*}

7.599

19777

9098

\begin{align*} \frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\ \end{align*}

7.599

19778

11891

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \\ \end{align*}

7.599

19779

8808

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}&=0 \\ \end{align*}

7.600

19780

12188

\begin{align*} y^{\prime }&=\frac {4 x \left (-1+a \right ) \left (1+a \right )}{4 y+y^{4} a^{2}-2 a^{4} y^{2} x^{2}+4 y^{2} a^{2} x^{2}+a^{6} x^{4}-3 a^{4} x^{4}+3 a^{2} x^{4}-y^{4}-2 y^{2} x^{2}-x^{4}} \\ \end{align*}

7.602

19781

23873

\begin{align*} y^{\prime }&=\frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{y x} \\ \end{align*}

7.602

19782

8797

\begin{align*} y^{\prime \prime }+y&=4 \sin \left (x \right ) \\ \end{align*}

7.606

19783

1356

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 2 \\ \end{align*}

7.607

19784

5037

\begin{align*} y y^{\prime }+x^{3}+y&=0 \\ \end{align*}

7.607

19785

12215

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 y x +\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 y^{2} x^{2}}{4}-3 x y^{2}+\frac {3 x^{4} y}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \\ \end{align*}

7.610

19786

17359

\begin{align*} y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\ \end{align*}

7.615

19787

15385

\begin{align*} \frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\ \end{align*}

7.622

19788

19377

\begin{align*} y^{\prime } x +y&=x^{2} y^{\prime }+y^{2} \\ \end{align*}

7.622

19789

9221

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

7.625

19790

13640

\begin{align*} y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\ \end{align*}

7.625

19791

18770

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

7.632

19792

4875

\begin{align*} x^{2} y^{\prime }&=\left (x +a y\right ) y \\ \end{align*}

7.641

19793

23126

\begin{align*} y^{\prime } x +\frac {y}{2 x +3}&=\ln \left (x -2\right ) \\ \end{align*}

7.642

19794

5197

\begin{align*} x^{2} \left (4 x -3 y\right ) y^{\prime }&=\left (6 x^{2}-3 y x +2 y^{2}\right ) y \\ \end{align*}

7.644

19795

6038

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

7.645

19796

11331

\begin{align*} y^{\prime }-x y^{2}-3 y x&=0 \\ \end{align*}

7.645

19797

12223

\begin{align*} y^{\prime }&=\frac {-128 y x -24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 y^{2} x^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \\ \end{align*}

7.649

19798

17905

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2}&=0 \\ y \left (-\infty \right ) &= \frac {7 \pi }{2} \\ \end{align*}

7.649

19799

2503

\begin{align*} \left (t -\sqrt {t y}\right ) y^{\prime }&=y \\ \end{align*}

7.656

19800

2875

\begin{align*} y y^{\prime }+x&=2 y \\ \end{align*}

7.657