| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19701 |
\begin{align*}
x y^{2}&=-y^{\prime } x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.444 |
|
| 19702 |
\begin{align*}
y \,{\mathrm e}^{2 x}-\left (4+{\mathrm e}^{2 x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.444 |
|
| 19703 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
7.445 |
|
| 19704 |
\begin{align*}
y^{\prime } x&=a y+b \left (x^{2}+1\right ) y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.446 |
|
| 19705 |
\begin{align*}
y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.450 |
|
| 19706 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.452 |
|
| 19707 |
\begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.452 |
|
| 19708 |
\begin{align*}
1&=b \left (\cos \left (y\right )+x \sin \left (y\right ) y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.452 |
|
| 19709 |
\begin{align*}
y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.455 |
|
| 19710 |
\begin{align*}
y^{\prime }&=\frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.456 |
|
| 19711 |
\begin{align*}
\sin \left (y^{\prime } x \right ) \cos \left (y\right )&=\cos \left (y^{\prime } x \right ) \sin \left (y\right )+y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.457 |
|
| 19712 |
\begin{align*}
y^{\prime }+x \sin \left (2 y\right )&=x^{3} \cos \left (y\right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.458 |
|
| 19713 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.460 |
|
| 19714 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.463 |
|
| 19715 |
\begin{align*}
2 \left (x -y^{4}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.464 |
|
| 19716 |
\begin{align*}
a y^{2} y^{\prime \prime }+b y^{2}&=c \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.470 |
|
| 19717 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.473 |
|
| 19718 |
\begin{align*}
4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.474 |
|
| 19719 |
\begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.483 |
|
| 19720 |
\begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
7.484 |
|
| 19721 |
\begin{align*}
\left (5 x -2 y+7\right ) y^{\prime }&=10 x -4 y+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.487 |
|
| 19722 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.488 |
|
| 19723 |
\begin{align*}
x^{2} y^{\prime }-y^{2}-y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.489 |
|
| 19724 |
\begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
7.490 |
|
| 19725 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.491 |
|
| 19726 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {1-y^{2}}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.496 |
|
| 19727 |
\begin{align*}
-y+y^{\prime } x&=y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.509 |
|
| 19728 |
\begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (-y^{\prime } x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.509 |
|
| 19729 |
\begin{align*}
16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.510 |
|
| 19730 |
\begin{align*}
y^{\prime }&=2 t y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.510 |
|
| 19731 |
\begin{align*}
x^{\prime }&=x-\frac {\mu x}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.519 |
|
| 19732 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.520 |
|
| 19733 |
\begin{align*}
\left (3 x +4 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.521 |
|
| 19734 |
\begin{align*}
y^{\prime }&=\frac {y-2 x}{-x +2 y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.525 |
|
| 19735 |
\begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.527 |
|
| 19736 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.527 |
|
| 19737 |
\begin{align*}
y^{\prime }&=\frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.529 |
|
| 19738 |
\begin{align*}
2 x +3 y+4&=\left (4 x +6 y+1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.530 |
|
| 19739 |
\begin{align*}
y&=2 y^{\prime } x +\ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.532 |
|
| 19740 |
\begin{align*}
3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.533 |
|
| 19741 |
\begin{align*}
\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.533 |
|
| 19742 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=-x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.534 |
|
| 19743 |
\begin{align*}
y y^{\prime }-7 y&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.534 |
|
| 19744 |
\begin{align*}
y^{\prime }&=y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.538 |
|
| 19745 |
\begin{align*}
x -y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.538 |
|
| 19746 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.542 |
|
| 19747 |
\begin{align*}
y^{\prime }&=a y^{2}+b \tan \left (x \right ) y+c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.543 |
|
| 19748 |
\begin{align*}
-\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.544 |
|
| 19749 |
\begin{align*}
y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y&={\mathrm e}^{6 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.545 |
|
| 19750 |
\begin{align*}
y^{\prime }-x y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.547 |
|
| 19751 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=\frac {5}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.547 |
|
| 19752 |
\begin{align*}
x +y+\left (3 x +3 y-4\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
7.549 |
|
| 19753 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.557 |
|
| 19754 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.558 |
|
| 19755 |
\begin{align*}
x \left (x^{3}+y^{5}\right ) y^{\prime }&=\left (x^{3}-y^{5}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.559 |
|
| 19756 |
\begin{align*}
y^{\prime }&=y x +\frac {1}{x^{2}+1} \\
y \left (-5\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.562 |
|
| 19757 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.564 |
|
| 19758 |
\begin{align*}
y y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.566 |
|
| 19759 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
7.568 |
|
| 19760 |
\begin{align*}
{y^{\prime }}^{2}+a y+b \,x^{2}&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
7.569 |
|
| 19761 |
\begin{align*}
x^{3}+y^{3}-y^{\prime } y^{2} x&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.569 |
|
| 19762 |
\begin{align*}
2 {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.570 |
|
| 19763 |
\begin{align*}
y^{\prime }&=\frac {x -2 y}{2 x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.571 |
|
| 19764 |
\begin{align*}
y^{\prime }&=\frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.572 |
|
| 19765 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.573 |
|
| 19766 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.575 |
|
| 19767 |
\begin{align*}
y^{\prime } x&=y-y^{3} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.576 |
|
| 19768 |
\begin{align*}
y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.580 |
|
| 19769 |
\begin{align*}
2 x y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= \sqrt {3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.588 |
|
| 19770 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.591 |
|
| 19771 |
\begin{align*}
\left (x +2 y+1\right ) y^{\prime }&=3+2 x +4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.591 |
|
| 19772 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.592 |
|
| 19773 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.592 |
|
| 19774 |
\begin{align*}
y y^{\prime }&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.593 |
|
| 19775 |
\begin{align*}
9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.593 |
|
| 19776 |
\begin{align*}
y^{\prime \prime }+2 {y^{\prime }}^{2}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.599 |
|
| 19777 |
\begin{align*}
\frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.599 |
|
| 19778 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.599 |
|
| 19779 |
\begin{align*}
x x^{\prime \prime }-{x^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.600 |
|
| 19780 |
\begin{align*}
y^{\prime }&=\frac {4 x \left (-1+a \right ) \left (1+a \right )}{4 y+y^{4} a^{2}-2 a^{4} y^{2} x^{2}+4 y^{2} a^{2} x^{2}+a^{6} x^{4}-3 a^{4} x^{4}+3 a^{2} x^{4}-y^{4}-2 y^{2} x^{2}-x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.602 |
|
| 19781 |
\begin{align*}
y^{\prime }&=\frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.602 |
|
| 19782 |
\begin{align*}
y^{\prime \prime }+y&=4 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.606 |
|
| 19783 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.607 |
|
| 19784 |
\begin{align*}
y y^{\prime }+x^{3}+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.607 |
|
| 19785 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 y x +\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 y^{2} x^{2}}{4}-3 x y^{2}+\frac {3 x^{4} y}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.610 |
|
| 19786 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.615 |
|
| 19787 |
\begin{align*}
\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.622 |
|
| 19788 |
\begin{align*}
y^{\prime } x +y&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.622 |
|
| 19789 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.625 |
|
| 19790 |
\begin{align*}
y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.625 |
|
| 19791 |
\begin{align*}
25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.632 |
|
| 19792 |
\begin{align*}
x^{2} y^{\prime }&=\left (x +a y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.641 |
|
| 19793 |
\begin{align*}
y^{\prime } x +\frac {y}{2 x +3}&=\ln \left (x -2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.642 |
|
| 19794 |
\begin{align*}
x^{2} \left (4 x -3 y\right ) y^{\prime }&=\left (6 x^{2}-3 y x +2 y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.644 |
|
| 19795 |
\begin{align*}
2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.645 |
|
| 19796 |
\begin{align*}
y^{\prime }-x y^{2}-3 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.645 |
|
| 19797 |
\begin{align*}
y^{\prime }&=\frac {-128 y x -24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 y^{2} x^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.649 |
|
| 19798 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2}&=0 \\
y \left (-\infty \right ) &= \frac {7 \pi }{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
7.649 |
|
| 19799 |
\begin{align*}
\left (t -\sqrt {t y}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.656 |
|
| 19800 |
\begin{align*}
y y^{\prime }+x&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.657 |
|