| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21801 |
\begin{align*}
y^{\prime }&=\sqrt {y}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.111 |
|
| 21802 |
\begin{align*}
x \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.115 |
|
| 21803 |
\begin{align*}
y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.134 |
|
| 21804 |
\begin{align*}
2 y-3 t +y^{\prime } t&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.135 |
|
| 21805 |
\begin{align*}
\left (a x y+b \,x^{n}\right ) y^{\prime }+\alpha y^{3}+\beta y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.151 |
|
| 21806 |
\begin{align*}
2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.155 |
|
| 21807 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +a -x^{2}+2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.162 |
|
| 21808 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.164 |
|
| 21809 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.168 |
|
| 21810 |
\begin{align*}
2 y^{\prime }+a x&=\sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.183 |
|
| 21811 |
\begin{align*}
x \left (-2 y-x +1\right ) y^{\prime }+\left (2 x +y+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.208 |
|
| 21812 |
\begin{align*}
\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.222 |
|
| 21813 |
\begin{align*}
x \left (2 x^{3}+y\right ) y^{\prime }&=\left (2 x^{3}-y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.227 |
|
| 21814 |
\begin{align*}
x^{\prime }&=\frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.235 |
|
| 21815 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.241 |
|
| 21816 |
\begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.247 |
|
| 21817 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.248 |
|
| 21818 |
\begin{align*}
\left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.256 |
|
| 21819 |
\begin{align*}
\frac {1}{x^{2}-y x +y^{2}}&=\frac {y^{\prime }}{2 y^{2}-y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.261 |
|
| 21820 |
\begin{align*}
\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.269 |
|
| 21821 |
\begin{align*}
\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.271 |
|
| 21822 |
\begin{align*}
x \left (x -2 y+1\right ) y^{\prime }+\left (1-2 x +y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.277 |
|
| 21823 |
\begin{align*}
x^{\prime \prime }+x^{\prime }-\beta x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.281 |
|
| 21824 |
\begin{align*}
y^{\prime }&=\left (\frac {\ln \left (-1+y\right ) y}{\left (1-y\right ) \ln \left (x \right ) x}-\frac {\ln \left (-1+y\right )}{\left (1-y\right ) \ln \left (x \right ) x}-f \left (x \right )\right ) \left (1-y\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.283 |
|
| 21825 |
\begin{align*}
9 x^{2} y^{\prime \prime }-15 y^{\prime } x +7 \left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
16.290 |
|
| 21826 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (b -n -1\right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.291 |
|
| 21827 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{y x +x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.293 |
|
| 21828 |
\begin{align*}
t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.308 |
|
| 21829 |
\begin{align*}
y^{\prime }&=\frac {a^{2} x y+a +a^{2} x +a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{2} x^{2} \left (a x y+1+a x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.313 |
|
| 21830 |
\begin{align*}
a x -b y+\left (b x -a y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.321 |
|
| 21831 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.335 |
|
| 21832 |
\begin{align*}
2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.344 |
|
| 21833 |
\begin{align*}
2 t y+y^{2}-t^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.345 |
|
| 21834 |
\begin{align*}
x \left (y x -2\right ) y^{\prime }+x^{2} y^{3}+x y^{2}-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.352 |
|
| 21835 |
\begin{align*}
t^{2} x^{\prime }-2 t x&=t^{5} \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.359 |
|
| 21836 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.376 |
|
| 21837 |
\begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.378 |
|
| 21838 |
\begin{align*}
-y+y^{\prime } x&=x \sqrt {x^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.381 |
|
| 21839 |
\begin{align*}
t^{2} y^{\prime \prime }+5 y^{\prime } t +13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.382 |
|
| 21840 |
\begin{align*}
y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.385 |
|
| 21841 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.397 |
|
| 21842 |
\begin{align*}
y^{\prime }&=-\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.421 |
|
| 21843 |
\begin{align*}
\left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.427 |
|
| 21844 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.450 |
|
| 21845 |
\begin{align*}
2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.462 |
|
| 21846 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.489 |
|
| 21847 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=\left (2 x +1\right )^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.493 |
|
| 21848 |
\begin{align*}
x -2 y-3+\left (2 x +y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.497 |
|
| 21849 |
\begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.499 |
|
| 21850 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=y y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.510 |
|
| 21851 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.515 |
|
| 21852 |
\begin{align*}
\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.531 |
|
| 21853 |
\begin{align*}
y^{\prime \prime } x +\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.547 |
|
| 21854 |
\begin{align*}
2 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.552 |
|
| 21855 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.559 |
|
| 21856 |
\begin{align*}
y^{\prime }&=3 \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.566 |
|
| 21857 |
\begin{align*}
y&=\left (2 x^{2} y^{3}-x \right ) y^{\prime } \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
16.588 |
|
| 21858 |
\begin{align*}
x \left (y x -3\right ) y^{\prime }+x y^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.602 |
|
| 21859 |
\begin{align*}
x^{2} y^{\prime }&=y^{2} x^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.620 |
|
| 21860 |
\begin{align*}
\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime }&=0 \\
y \left (\pi \right ) &= \pi \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.625 |
|
| 21861 |
\begin{align*}
y^{\prime }-\left (A y-a \right ) \left (B y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.626 |
|
| 21862 |
\begin{align*}
y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.628 |
|
| 21863 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.631 |
|
| 21864 |
\begin{align*}
1+\left (x +y\right )^{2}+\left (1+x \left (x +y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.631 |
|
| 21865 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.633 |
|
| 21866 |
\begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.638 |
|
| 21867 |
\begin{align*}
-y+y^{\prime }&=t y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.655 |
|
| 21868 |
\begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.656 |
|
| 21869 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.723 |
|
| 21870 |
\begin{align*}
y^{\prime }&=\frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.725 |
|
| 21871 |
\begin{align*}
3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.737 |
|
| 21872 |
\begin{align*}
x^{\prime }&=2 x-3 y \\
y^{\prime }&=x+y+2 z \\
z^{\prime }&=5 y-7 z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.741 |
|
| 21873 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \arcsin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.743 |
|
| 21874 |
\begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.764 |
|
| 21875 |
\begin{align*}
\left (-x +2 \sqrt {y x}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.772 |
|
| 21876 |
\begin{align*}
\left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.781 |
|
| 21877 |
\begin{align*}
\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=\left (3 x -1\right )^{2} {\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.782 |
|
| 21878 |
\begin{align*}
{y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
16.783 |
|
| 21879 |
\begin{align*}
2 x -y+1+\left (-1+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.784 |
|
| 21880 |
\begin{align*}
\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.787 |
|
| 21881 |
\begin{align*}
x \left (x^{2}-y^{2}\right )-x \left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.788 |
|
| 21882 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.790 |
|
| 21883 |
\begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.792 |
|
| 21884 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (1\right ) &= {\mathrm e}^{2} \\
y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.793 |
|
| 21885 |
\begin{align*}
y^{\prime }&=\frac {\left (-256 a \,x^{2} y-32 a^{2} x^{6}-256 a \,x^{2}+512 y^{3}+192 x^{4} a y^{2}+24 y a^{2} x^{8}+a^{3} x^{12}\right ) x}{512 y+64 a \,x^{4}+512} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.794 |
|
| 21886 |
\begin{align*}
y^{\prime }&=\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.798 |
|
| 21887 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.805 |
|
| 21888 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.807 |
|
| 21889 |
\begin{align*}
y^{\prime }&=\frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
16.809 |
|
| 21890 |
\begin{align*}
2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.819 |
|
| 21891 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.828 |
|
| 21892 |
\begin{align*}
-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.829 |
|
| 21893 |
\begin{align*}
4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.830 |
|
| 21894 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.835 |
|
| 21895 |
\begin{align*}
y^{\prime \prime } x -\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.858 |
|
| 21896 |
\begin{align*}
y^{\prime }&=a y^{2}+b \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.864 |
|
| 21897 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.866 |
|
| 21898 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
16.870 |
|
| 21899 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}-y^{2}&=-\frac {2}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.874 |
|
| 21900 |
\begin{align*}
y y^{\prime } x&=x^{2}+2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
16.883 |
|