| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24501 |
\begin{align*}
y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
52.908 |
|
| 24502 |
\begin{align*}
\frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
52.958 |
|
| 24503 |
\begin{align*}
y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.025 |
|
| 24504 |
\begin{align*}
{x^{\prime }}^{2}+t x&=\sqrt {1+t} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
53.056 |
|
| 24505 |
\begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.083 |
|
| 24506 |
\begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.094 |
|
| 24507 |
\begin{align*}
2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.162 |
|
| 24508 |
\begin{align*}
y \left (y^{2} x^{2}-1\right )+x \left (x^{2} y+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
53.213 |
|
| 24509 |
\begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.321 |
|
| 24510 |
\begin{align*}
y^{\prime }&=\frac {2 x^{2}+2 y^{2}-3 y x}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.408 |
|
| 24511 |
\begin{align*}
y^{\prime }&=\lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
53.438 |
|
| 24512 |
\begin{align*}
y^{\prime \prime }+4 y&=t \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= \frac {\pi }{16} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.452 |
|
| 24513 |
\begin{align*}
\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.471 |
|
| 24514 |
\begin{align*}
-y+y^{\prime } t&=t y^{3} \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.481 |
|
| 24515 |
\begin{align*}
y y^{\prime }-y&=\frac {A}{\sqrt {x}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
53.495 |
|
| 24516 |
\begin{align*}
y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.524 |
|
| 24517 |
\begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.579 |
|
| 24518 |
\begin{align*}
y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.591 |
|
| 24519 |
\begin{align*}
y^{\prime }&=y^{2}+x^{n -1} a n -a^{2} x^{2 n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.692 |
|
| 24520 |
\begin{align*}
-\left (2 x +3\right ) y+\left (x^{2}+x +1\right ) y^{\prime }+\left (x^{2}+3 x +4\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.710 |
|
| 24521 |
\begin{align*}
y^{2}&=\left (t y-4 t^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.808 |
|
| 24522 |
\begin{align*}
y^{\prime }-a \sqrt {1+y^{2}}-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.836 |
|
| 24523 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.873 |
|
| 24524 |
\begin{align*}
{y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
53.900 |
|
| 24525 |
\begin{align*}
y^{\prime \prime }+4 y&=\sec \left (2 t \right )+\tan \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.993 |
|
| 24526 |
\begin{align*}
\frac {8 x^{4} y+12 x^{3} y^{2}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
54.088 |
|
| 24527 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.136 |
|
| 24528 |
\begin{align*}
\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.177 |
|
| 24529 |
\begin{align*}
\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.179 |
|
| 24530 |
\begin{align*}
y y^{\prime }+a y+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.229 |
|
| 24531 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=2 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.361 |
|
| 24532 |
\begin{align*}
y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.398 |
|
| 24533 |
\begin{align*}
2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.496 |
|
| 24534 |
\begin{align*}
x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
54.551 |
|
| 24535 |
\begin{align*}
\left (2 y x +2 x^{2}\right ) y^{\prime }&=x^{2}+2 y x +2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.557 |
|
| 24536 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.601 |
|
| 24537 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.674 |
|
| 24538 |
\begin{align*}
1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.683 |
|
| 24539 |
\begin{align*}
y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.694 |
|
| 24540 |
\begin{align*}
\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.827 |
|
| 24541 |
\begin{align*}
\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -a^{2} x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.856 |
|
| 24542 |
\begin{align*}
x^{\prime }&=x^{3}+a x^{2}-b x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.865 |
|
| 24543 |
\begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.899 |
|
| 24544 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.942 |
|
| 24545 |
\begin{align*}
x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.007 |
|
| 24546 |
\begin{align*}
1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.048 |
|
| 24547 |
\begin{align*}
-a y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.048 |
|
| 24548 |
\begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.079 |
|
| 24549 |
\begin{align*}
x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
55.085 |
|
| 24550 |
\begin{align*}
y y^{\prime }-a \left (1-\frac {b}{\sqrt {x}}\right ) y&=\frac {a^{2} b}{\sqrt {x}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
55.093 |
|
| 24551 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
55.171 |
|
| 24552 |
\begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.186 |
|
| 24553 |
\begin{align*}
y y^{\prime }&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
55.187 |
|
| 24554 |
\begin{align*}
y^{\prime }&=\frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
55.192 |
|
| 24555 |
\begin{align*}
y y^{\prime }-\frac {2 a \left (3 x -10\right ) y}{5 x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (8 x -5\right )}{5 x^{7}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
55.194 |
|
| 24556 |
\begin{align*}
y^{\prime } x +a \,x^{2} y^{2}+2 y&=b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.243 |
|
| 24557 |
\begin{align*}
y^{\prime }&=\sqrt {\frac {y}{t}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.246 |
|
| 24558 |
\begin{align*}
r y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.293 |
|
| 24559 |
\begin{align*}
y y^{\prime }-\frac {a \left (5 x -4\right ) y}{x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
55.449 |
|
| 24560 |
\begin{align*}
x^{2}-2 y^{2}+y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.469 |
|
| 24561 |
\begin{align*}
\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.487 |
|
| 24562 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (a +x \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (a +x \right )^{2} \left (x +b \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.568 |
|
| 24563 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.596 |
|
| 24564 |
\begin{align*}
y^{\prime \prime }-\frac {a^{2}}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.656 |
|
| 24565 |
\begin{align*}
y^{\prime }&=y \left (\mu -y\right ) \left (\mu -2 y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.703 |
|
| 24566 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.706 |
|
| 24567 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.750 |
|
| 24568 |
\begin{align*}
y^{\prime \prime }+\frac {5 y^{\prime }}{x -1}+\frac {4 y}{\left (x -1\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.839 |
|
| 24569 |
\begin{align*}
r^{\prime \prime }+r^{\prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.858 |
|
| 24570 |
\begin{align*}
y^{\prime \prime }-10 y^{\prime }+34 y&={\mathrm e}^{5 t} \cot \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.905 |
|
| 24571 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.972 |
|
| 24572 |
\begin{align*}
y^{\prime }&=\frac {\left (-\sqrt {a}\, x^{3}+2 \sqrt {a \,x^{4}+8 y}+2 x^{2} \sqrt {a \,x^{4}+8 y}+2 x^{3} \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
55.975 |
|
| 24573 |
\begin{align*}
\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.039 |
|
| 24574 |
\begin{align*}
{y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
56.059 |
|
| 24575 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3}-{\mathrm e}^{3 t} \\
x_{3}^{\prime }&=-3 x_{1}+x_{2}-x_{3}-{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.211 |
|
| 24576 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.251 |
|
| 24577 |
\begin{align*}
x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.277 |
|
| 24578 |
\begin{align*}
-4 x -y-1+\left (x +y+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.295 |
|
| 24579 |
\begin{align*}
y^{\prime \prime }+\frac {a^{2}}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.439 |
|
| 24580 |
\begin{align*}
y y^{\prime }-y&=2 A^{2}-A \sqrt {x} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
56.460 |
|
| 24581 |
\begin{align*}
y^{2}-\left (y x +2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.517 |
|
| 24582 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.635 |
|
| 24583 |
\begin{align*}
y^{\prime \prime }+3 y&=x^{2}+1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.646 |
|
| 24584 |
\begin{align*}
-a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
56.697 |
|
| 24585 |
\begin{align*}
x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.744 |
|
| 24586 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.819 |
|
| 24587 |
\begin{align*}
\left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
56.862 |
|
| 24588 |
\begin{align*}
y^{\prime } x&=a \,x^{n}+b y+c y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.903 |
|
| 24589 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{3}-\frac {9 x_{4}}{5} \\
x_{2}^{\prime }&=\frac {51 x_{2}}{10}-x_{4}+3 x_{5} \\
x_{3}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\
x_{4}^{\prime }&=x_{2}-\frac {31 x_{3}}{10}+4 x_{4} \\
x_{5}^{\prime }&=-\frac {14 x_{1}}{5}+\frac {3 x_{4}}{2}-x_{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.934 |
|
| 24590 |
\begin{align*}
y y^{\prime } x&=a y^{2}+b y+c \,x^{n}+s \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
56.951 |
|
| 24591 |
\begin{align*}
y^{\prime }&=y^{{2}/{3}}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.970 |
|
| 24592 |
\begin{align*}
y^{\prime \prime }+4 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.988 |
|
| 24593 |
\begin{align*}
-\left (4 p^{2}+1\right ) y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
57.059 |
|
| 24594 |
\begin{align*}
{y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.075 |
|
| 24595 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.125 |
|
| 24596 |
\begin{align*}
\left (-2+t \right )^{2} y^{\prime \prime }+5 \left (-2+t \right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.129 |
|
| 24597 |
\begin{align*}
\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.144 |
|
| 24598 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.158 |
|
| 24599 |
\begin{align*}
y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
57.256 |
|
| 24600 |
\begin{align*}
y^{\prime }&=\sqrt {x^{2}-y}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.466 |
|