2.3.246 Problems 24501 to 24600

Table 2.1023: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

24501

11851

\begin{align*} y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\ \end{align*}

52.908

24502

13967

\begin{align*} \frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\ \end{align*}

52.958

24503

24703

\begin{align*} y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\ \end{align*}

53.025

24504

14247

\begin{align*} {x^{\prime }}^{2}+t x&=\sqrt {1+t} \\ \end{align*}

53.056

24505

9791

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

53.083

24506

17914

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\ \end{align*}

53.094

24507

6123

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

53.162

24508

24221

\begin{align*} y \left (y^{2} x^{2}-1\right )+x \left (x^{2} y+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

53.213

24509

17820

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

53.321

24510

23877

\begin{align*} y^{\prime }&=\frac {2 x^{2}+2 y^{2}-3 y x}{y x} \\ \end{align*}

53.408

24511

13425

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

53.438

24512

17030

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= \frac {\pi }{16} \\ \end{align*}

53.452

24513

14065

\begin{align*} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2}&=0 \\ \end{align*}

53.471

24514

17254

\begin{align*} -y+y^{\prime } t&=t y^{3} \sin \left (t \right ) \\ \end{align*}

53.481

24515

13522

\begin{align*} y y^{\prime }-y&=\frac {A}{\sqrt {x}} \\ \end{align*}

53.495

24516

12882

\begin{align*} y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

53.524

24517

16620

\begin{align*} y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right ) \\ \end{align*}

53.579

24518

322

\begin{align*} y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\ \end{align*}

53.591

24519

13211

\begin{align*} y^{\prime }&=y^{2}+x^{n -1} a n -a^{2} x^{2 n} \\ \end{align*}

53.692

24520

6128

\begin{align*} -\left (2 x +3\right ) y+\left (x^{2}+x +1\right ) y^{\prime }+\left (x^{2}+3 x +4\right ) y^{\prime \prime }&=0 \\ \end{align*}

53.710

24521

17277

\begin{align*} y^{2}&=\left (t y-4 t^{2}\right ) y^{\prime } \\ \end{align*}

53.808

24522

11360

\begin{align*} y^{\prime }-a \sqrt {1+y^{2}}-b&=0 \\ \end{align*}

53.836

24523

23086

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

53.873

24524

24803

\begin{align*} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

53.900

24525

17524

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right )+\tan \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

53.993

24526

23888

\begin{align*} \frac {8 x^{4} y+12 x^{3} y^{2}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\ \end{align*}

54.088

24527

12514

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}

54.136

24528

11658

\begin{align*} \left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right )&=0 \\ \end{align*}

54.177

24529

20001

\begin{align*} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2}&=0 \\ \end{align*}

54.179

24530

11502

\begin{align*} y y^{\prime }+a y+x&=0 \\ \end{align*}

54.229

24531

15098

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=2 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

54.361

24532

24030

\begin{align*} y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\ \end{align*}

54.398

24533

17250

\begin{align*} 2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

54.496

24534

6400

\begin{align*} x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\ \end{align*}

54.551

24535

16303

\begin{align*} \left (2 y x +2 x^{2}\right ) y^{\prime }&=x^{2}+2 y x +2 y^{2} \\ \end{align*}

54.557

24536

7974

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

54.601

24537

367

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

54.674

24538

19770

\begin{align*} 1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=0 \\ \end{align*}

54.683

24539

4668

\begin{align*} y^{\prime }&=a x +b y^{2} \\ \end{align*}

54.694

24540

10946

\begin{align*} \left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y&=0 \\ \end{align*}

54.827

24541

5528

\begin{align*} \left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -a^{2} x^{2}+y^{2}&=0 \\ \end{align*}

54.856

24542

20961

\begin{align*} x^{\prime }&=x^{3}+a x^{2}-b x \\ \end{align*}

54.865

24543

8758

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

54.899

24544

20799

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

54.942

24545

8772

\begin{align*} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\ \end{align*}

55.007

24546

140

\begin{align*} 1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

55.048

24547

6076

\begin{align*} -a y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

55.048

24548

23509

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

55.079

24549

13907

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

55.085

24550

13575

\begin{align*} y y^{\prime }-a \left (1-\frac {b}{\sqrt {x}}\right ) y&=\frac {a^{2} b}{\sqrt {x}} \\ \end{align*}

55.093

24551

1754

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\ \end{align*}

55.171

24552

19333

\begin{align*} y^{\prime } x +y&=y^{\prime } \sqrt {y x} \\ \end{align*}

55.186

24553

13568

\begin{align*} y y^{\prime }&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\ \end{align*}

55.187

24554

11917

\begin{align*} y^{\prime }&=\frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

55.192

24555

13587

\begin{align*} y y^{\prime }-\frac {2 a \left (3 x -10\right ) y}{5 x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (8 x -5\right )}{5 x^{7}} \\ \end{align*}

55.194

24556

4789

\begin{align*} y^{\prime } x +a \,x^{2} y^{2}+2 y&=b \\ \end{align*}

55.243

24557

17112

\begin{align*} y^{\prime }&=\sqrt {\frac {y}{t}} \\ y \left (1\right ) &= 2 \\ \end{align*}

55.246

24558

170

\begin{align*} r y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

55.293

24559

13586

\begin{align*} y y^{\prime }-\frac {a \left (5 x -4\right ) y}{x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \\ \end{align*}

55.449

24560

21368

\begin{align*} x^{2}-2 y^{2}+y y^{\prime } x&=0 \\ \end{align*}

55.469

24561

2629

\begin{align*} \left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

55.487

24562

12600

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (a +x \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (a +x \right )^{2} \left (x +b \right )} \\ \end{align*}

55.568

24563

17472

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

55.596

24564

20129

\begin{align*} y^{\prime \prime }-\frac {a^{2}}{y^{2}}&=0 \\ \end{align*}

55.656

24565

20958

\begin{align*} y^{\prime }&=y \left (\mu -y\right ) \left (\mu -2 y\right ) \\ \end{align*}

55.703

24566

330

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\ \end{align*}

55.706

24567

23524

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

55.750

24568

23402

\begin{align*} y^{\prime \prime }+\frac {5 y^{\prime }}{x -1}+\frac {4 y}{\left (x -1\right )^{2}}&=0 \\ \end{align*}

55.839

24569

25580

\begin{align*} r^{\prime \prime }+r^{\prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

55.858

24570

17494

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&={\mathrm e}^{5 t} \cot \left (3 t \right ) \\ \end{align*}

55.905

24571

12639

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \\ \end{align*}

55.972

24572

12095

\begin{align*} y^{\prime }&=\frac {\left (-\sqrt {a}\, x^{3}+2 \sqrt {a \,x^{4}+8 y}+2 x^{2} \sqrt {a \,x^{4}+8 y}+2 x^{3} \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2} \\ \end{align*}

55.975

24573

10526

\begin{align*} \left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y&=0 \\ \end{align*}

56.039

24574

11817

\begin{align*} {y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\ \end{align*}

56.059

24575

2771

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3}-{\mathrm e}^{3 t} \\ x_{3}^{\prime }&=-3 x_{1}+x_{2}-x_{3}-{\mathrm e}^{3 t} \\ \end{align*}

56.211

24576

10075

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

56.251

24577

17324

\begin{align*} x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \\ \end{align*}

56.277

24578

7518

\begin{align*} -4 x -y-1+\left (x +y+3\right ) y^{\prime }&=0 \\ \end{align*}

56.295

24579

20128

\begin{align*} y^{\prime \prime }+\frac {a^{2}}{y^{2}}&=0 \\ \end{align*}

56.439

24580

13527

\begin{align*} y y^{\prime }-y&=2 A^{2}-A \sqrt {x} \\ \end{align*}

56.460

24581

24302

\begin{align*} y^{2}-\left (y x +2\right ) y^{\prime }&=0 \\ \end{align*}

56.517

24582

893

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

56.635

24583

22776

\begin{align*} y^{\prime \prime }+3 y&=x^{2}+1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

56.646

24584

6256

\begin{align*} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

56.697

24585

18043

\begin{align*} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

56.744

24586

22653

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x \\ \end{align*}

56.819

24587

14068

\begin{align*} \left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\ \end{align*}

56.862

24588

4778

\begin{align*} y^{\prime } x&=a \,x^{n}+b y+c y^{2} \\ \end{align*}

56.903

24589

9686

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{3}-\frac {9 x_{4}}{5} \\ x_{2}^{\prime }&=\frac {51 x_{2}}{10}-x_{4}+3 x_{5} \\ x_{3}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\ x_{4}^{\prime }&=x_{2}-\frac {31 x_{3}}{10}+4 x_{4} \\ x_{5}^{\prime }&=-\frac {14 x_{1}}{5}+\frac {3 x_{4}}{2}-x_{5} \\ \end{align*}

56.934

24590

13619

\begin{align*} y y^{\prime } x&=a y^{2}+b y+c \,x^{n}+s \\ \end{align*}

56.951

24591

8399

\begin{align*} y^{\prime }&=y^{{2}/{3}}-y \\ \end{align*}

56.970

24592

17531

\begin{align*} y^{\prime \prime }+4 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

56.988

24593

6167

\begin{align*} -\left (4 p^{2}+1\right ) y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

57.059

24594

11837

\begin{align*} {y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1}&=0 \\ \end{align*}

57.075

24595

3749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\ \end{align*}

57.125

24596

2632

\begin{align*} \left (-2+t \right )^{2} y^{\prime \prime }+5 \left (-2+t \right ) y^{\prime }+4 y&=0 \\ \end{align*}

57.129

24597

2934

\begin{align*} \frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )}&=0 \\ \end{align*}

57.144

24598

5786

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\ \end{align*}

57.158

24599

11993

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\ \end{align*}

57.256

24600

17841

\begin{align*} y^{\prime }&=\sqrt {x^{2}-y}-x \\ \end{align*}

57.466