| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24601 |
\begin{align*}
x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
57.472 |
|
| 24602 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
y \left (0\right ) &= {\frac {7}{9}} \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.520 |
|
| 24603 |
\begin{align*}
y^{\prime \prime }&=-\frac {x \sin \left (x \right ) y^{\prime }}{\cos \left (x \right ) x -\sin \left (x \right )}+\frac {\sin \left (x \right ) y}{\cos \left (x \right ) x -\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.684 |
|
| 24604 |
\begin{align*}
-2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 \cos \left (x \right ) y+9 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.690 |
|
| 24605 |
\begin{align*}
y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.819 |
|
| 24606 |
\begin{align*}
x^{\prime }&=-x \left (k^{2}+x^{2}\right ) \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
57.937 |
|
| 24607 |
\begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.968 |
|
| 24608 |
\begin{align*}
y^{\prime }&=\frac {c t -a y}{A t +b y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
58.061 |
|
| 24609 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.110 |
|
| 24610 |
\begin{align*}
y^{\prime }&=\frac {3 y^{2}-t^{2}}{2 t y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.116 |
|
| 24611 |
\begin{align*}
x^{2}-2 y^{2}+y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.183 |
|
| 24612 |
\begin{align*}
y^{\prime }&=\alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
58.184 |
|
| 24613 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.189 |
|
| 24614 |
\begin{align*}
y^{\prime }&=\frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x +2 y x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.197 |
|
| 24615 |
\begin{align*}
y y^{\prime }-y&=a x +b \,x^{m} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
58.210 |
|
| 24616 |
\begin{align*}
y^{\prime }&=\frac {\left (3+y\right )^{3} {\mathrm e}^{\frac {9 x^{2}}{2}} x \,{\mathrm e}^{\frac {3 x^{2}}{2}} {\mathrm e}^{-3 x^{2}}}{243 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+243 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.216 |
|
| 24617 |
\begin{align*}
x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.264 |
|
| 24618 |
\begin{align*}
y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.343 |
|
| 24619 |
\begin{align*}
x^{2}-2 y^{2}+y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.500 |
|
| 24620 |
\begin{align*}
x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.686 |
|
| 24621 |
\begin{align*}
{y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
58.692 |
|
| 24622 |
\begin{align*}
y y^{\prime }+x&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
58.769 |
|
| 24623 |
\begin{align*}
x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.840 |
|
| 24624 |
\begin{align*}
y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.878 |
|
| 24625 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.881 |
|
| 24626 |
\begin{align*}
x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.881 |
|
| 24627 |
\begin{align*}
y^{\prime }&=\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.883 |
|
| 24628 |
\begin{align*}
y^{\prime }&=\lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
58.923 |
|
| 24629 |
\begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
58.930 |
|
| 24630 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.976 |
|
| 24631 |
\begin{align*}
y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
58.977 |
|
| 24632 |
\begin{align*}
y^{\prime }&=\frac {x +y-1}{x +4 y+2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.034 |
|
| 24633 |
\begin{align*}
y^{\prime } x +a_{0} +a_{1} x +\left (a_{2} +a_{3} x y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.109 |
|
| 24634 |
\begin{align*}
y^{\prime }&=\alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.147 |
|
| 24635 |
\begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.366 |
|
| 24636 |
\begin{align*}
5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.383 |
|
| 24637 |
\begin{align*}
y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
59.392 |
|
| 24638 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= -5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.409 |
|
| 24639 |
\begin{align*}
\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.500 |
|
| 24640 |
\begin{align*}
y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
59.503 |
|
| 24641 |
\begin{align*}
\left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \tanh \left (\mu x \right ) y-d^{2}+c d \tanh \left (\mu x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.522 |
|
| 24642 |
\begin{align*}
y^{\prime }&=y \sqrt {a +b y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.579 |
|
| 24643 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.582 |
|
| 24644 |
\begin{align*}
\frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}}&=m \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.599 |
|
| 24645 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.641 |
|
| 24646 |
\begin{align*}
f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime }&={y^{\prime }}^{2}-y y^{\prime \prime } \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
59.673 |
|
| 24647 |
\begin{align*}
\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.742 |
|
| 24648 |
\begin{align*}
2 \left (1-x \right ) y-\left (-x^{2}+2\right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.747 |
|
| 24649 |
\begin{align*}
-\left (p^{2}+x^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.750 |
|
| 24650 |
\begin{align*}
y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
59.778 |
|
| 24651 |
\begin{align*}
y^{\prime \prime }&=\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.803 |
|
| 24652 |
\begin{align*}
y^{\prime }&=\lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
59.822 |
|
| 24653 |
\begin{align*}
y y^{\prime }&=\frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
59.869 |
|
| 24654 |
\begin{align*}
-3 y+\left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
59.918 |
|
| 24655 |
\begin{align*}
y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
59.937 |
|
| 24656 |
\begin{align*}
3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.944 |
|
| 24657 |
\begin{align*}
\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.945 |
|
| 24658 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
59.949 |
|
| 24659 |
\begin{align*}
y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
59.983 |
|
| 24660 |
\begin{align*}
y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.026 |
|
| 24661 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.088 |
|
| 24662 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{1+k} y-1\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
60.142 |
|
| 24663 |
\begin{align*}
y^{\prime }&=a \,x^{n}+b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
60.286 |
|
| 24664 |
\begin{align*}
x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\
y \left (\infty \right ) &= \frac {16 \pi }{3} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
60.288 |
|
| 24665 |
\begin{align*}
{\mathrm e}^{y}+\cos \left (x \right ) y+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
60.323 |
|
| 24666 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
60.329 |
|
| 24667 |
\begin{align*}
y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.344 |
|
| 24668 |
\begin{align*}
4 y+y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.418 |
|
| 24669 |
\begin{align*}
t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
60.547 |
|
| 24670 |
\begin{align*}
y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
60.556 |
|
| 24671 |
\begin{align*}
\left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
60.676 |
|
| 24672 |
\begin{align*}
\left (b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.683 |
|
| 24673 |
\begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (4\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
60.801 |
|
| 24674 |
\begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.841 |
|
| 24675 |
\begin{align*}
y^{\prime \prime }+9 y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.887 |
|
| 24676 |
\begin{align*}
y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
60.969 |
|
| 24677 |
\begin{align*}
\left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
60.973 |
|
| 24678 |
\begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.002 |
|
| 24679 |
\begin{align*}
y^{\prime \prime }-y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.051 |
|
| 24680 |
\begin{align*}
y^{\prime \prime }+y&=x^{3}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.120 |
|
| 24681 |
\begin{align*}
-a^{2} y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.138 |
|
| 24682 |
\begin{align*}
x^{3} y^{\prime }&=a \,x^{3} y^{2}+\left (b \,x^{2}+c \right ) y+s x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.177 |
|
| 24683 |
\begin{align*}
f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= \lambda \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.238 |
|
| 24684 |
\begin{align*}
y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
61.247 |
|
| 24685 |
\begin{align*}
y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
61.298 |
|
| 24686 |
\begin{align*}
y^{2}+\left (y x +x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.298 |
|
| 24687 |
\begin{align*}
-a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.300 |
|
| 24688 |
\begin{align*}
-\left (p^{2}-x^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.322 |
|
| 24689 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (w t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.326 |
|
| 24690 |
\begin{align*}
x^{7} y y^{\prime }&=2 x^{2}+2+5 x^{3} y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
61.361 |
|
| 24691 |
\begin{align*}
\left (8 {y^{\prime }}^{3}-27\right ) x&=\frac {12 {y^{\prime }}^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.377 |
|
| 24692 |
\begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.444 |
|
| 24693 |
\begin{align*}
x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.487 |
|
| 24694 |
\begin{align*}
y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.563 |
|
| 24695 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {4 x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.646 |
|
| 24696 |
\begin{align*}
y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.654 |
|
| 24697 |
\begin{align*}
2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
61.655 |
|
| 24698 |
\begin{align*}
\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
61.805 |
|
| 24699 |
\begin{align*}
-\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
61.885 |
|
| 24700 |
\begin{align*}
-\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
61.946 |
|