2.3.247 Problems 24601 to 24700

Table 2.1025: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

24601

2923

\begin{align*} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

57.472

24602

21921

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\ \end{align*}

57.520

24603

12681

\begin{align*} y^{\prime \prime }&=-\frac {x \sin \left (x \right ) y^{\prime }}{\cos \left (x \right ) x -\sin \left (x \right )}+\frac {\sin \left (x \right ) y}{\cos \left (x \right ) x -\sin \left (x \right )} \\ \end{align*}

57.684

24604

1686

\begin{align*} -2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 \cos \left (x \right ) y+9 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

57.690

24605

3546

\begin{align*} y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\ \end{align*}

57.819

24606

14897

\begin{align*} x^{\prime }&=-x \left (k^{2}+x^{2}\right ) \\ x \left (0\right ) &= x_{0} \\ \end{align*}

57.937

24607

10019

\begin{align*} p^{\prime }&=a p-b p^{2} \\ p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\ \end{align*}

57.968

24608

25496

\begin{align*} y^{\prime }&=\frac {c t -a y}{A t +b y} \\ \end{align*}

58.061

24609

11665

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \\ \end{align*}

58.110

24610

25007

\begin{align*} y^{\prime }&=\frac {3 y^{2}-t^{2}}{2 t y} \\ \end{align*}

58.116

24611

19275

\begin{align*} x^{2}-2 y^{2}+y y^{\prime } x&=0 \\ \end{align*}

58.183

24612

13327

\begin{align*} y^{\prime }&=\alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \\ \end{align*}

58.184

24613

2398

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

58.189

24614

12090

\begin{align*} y^{\prime }&=\frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x +2 y x \right )} \\ \end{align*}

58.197

24615

13551

\begin{align*} y y^{\prime }-y&=a x +b \,x^{m} \\ \end{align*}

58.210

24616

12097

\begin{align*} y^{\prime }&=\frac {\left (3+y\right )^{3} {\mathrm e}^{\frac {9 x^{2}}{2}} x \,{\mathrm e}^{\frac {3 x^{2}}{2}} {\mathrm e}^{-3 x^{2}}}{243 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+243 y} \\ \end{align*}

58.216

24617

11790

\begin{align*} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

58.264

24618

7503

\begin{align*} y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\ \end{align*}

58.343

24619

9146

\begin{align*} x^{2}-2 y^{2}+y y^{\prime } x&=0 \\ \end{align*}

58.500

24620

12572

\begin{align*} x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

58.686

24621

19137

\begin{align*} {y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\ \end{align*}

58.692

24622

6890

\begin{align*} y y^{\prime }+x&=a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

58.769

24623

5003

\begin{align*} x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\ \end{align*}

58.840

24624

24305

\begin{align*} y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime }&=0 \\ \end{align*}

58.878

24625

363

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\ \end{align*}

58.881

24626

11744

\begin{align*} x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x&=0 \\ \end{align*}

58.881

24627

11990

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \\ \end{align*}

58.883

24628

13433

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

58.923

24629

19863

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

58.930

24630

870

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\ \end{align*}

58.976

24631

3188

\begin{align*} y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

58.977

24632

19290

\begin{align*} y^{\prime }&=\frac {x +y-1}{x +4 y+2} \\ \end{align*}

59.034

24633

4788

\begin{align*} y^{\prime } x +a_{0} +a_{1} x +\left (a_{2} +a_{3} x y\right ) y&=0 \\ \end{align*}

59.109

24634

13378

\begin{align*} y^{\prime }&=\alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \\ \end{align*}

59.147

24635

10067

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ \end{align*}

59.366

24636

17244

\begin{align*} 5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime }&=0 \\ \end{align*}

59.383

24637

13612

\begin{align*} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\ \end{align*}

59.392

24638

1741

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= -5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

59.409

24639

20527

\begin{align*} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\ \end{align*}

59.500

24640

11935

\begin{align*} y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

59.503

24641

13339

\begin{align*} \left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \tanh \left (\mu x \right ) y-d^{2}+c d \tanh \left (\mu x \right ) \\ \end{align*}

59.522

24642

4713

\begin{align*} y^{\prime }&=y \sqrt {a +b y} \\ \end{align*}

59.579

24643

7760

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

59.582

24644

15361

\begin{align*} \frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}}&=m \\ \end{align*}

59.599

24645

19870

\begin{align*} y^{\prime \prime }&=\frac {1}{y^{2}} \\ \end{align*}

59.641

24646

6598

\begin{align*} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime }&={y^{\prime }}^{2}-y y^{\prime \prime } \\ \end{align*}

59.673

24647

1838

\begin{align*} \left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

59.742

24648

6121

\begin{align*} 2 \left (1-x \right ) y-\left (-x^{2}+2\right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\ \end{align*}

59.747

24649

5982

\begin{align*} -\left (p^{2}+x^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

59.750

24650

13655

\begin{align*} y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\ \end{align*}

59.778

24651

12668

\begin{align*} y^{\prime \prime }&=\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \\ \end{align*}

59.803

24652

13476

\begin{align*} y^{\prime }&=\lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \\ \end{align*}

59.822

24653

13558

\begin{align*} y y^{\prime }&=\frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \\ \end{align*}

59.869

24654

6130

\begin{align*} -3 y+\left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

59.918

24655

11998

\begin{align*} y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\ \end{align*}

59.937

24656

4331

\begin{align*} 3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime }&=0 \\ \end{align*}

59.944

24657

12518

\begin{align*} \left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y&=0 \\ \end{align*}

59.945

24658

8029

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\ \end{align*}

59.949

24659

20601

\begin{align*} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}&={y^{\prime }}^{2} \\ \end{align*}

59.983

24660

7814

\begin{align*} y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\ \end{align*}

60.026

24661

2595

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\ \end{align*}

60.088

24662

13444

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

60.142

24663

4671

\begin{align*} y^{\prime }&=a \,x^{n}+b y^{2} \\ \end{align*}

60.286

24664

17902

\begin{align*} x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\ y \left (\infty \right ) &= \frac {16 \pi }{3} \\ \end{align*}

60.288

24665

201

\begin{align*} {\mathrm e}^{y}+\cos \left (x \right ) y+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

60.323

24666

13215

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \\ \end{align*}

60.329

24667

16108

\begin{align*} y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

60.344

24668

3161

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

60.418

24669

14836

\begin{align*} t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x&=0 \\ \end{align*}

60.547

24670

10038

\begin{align*} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\ \end{align*}

60.556

24671

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

60.676

24672

5980

\begin{align*} \left (b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

60.683

24673

17052

\begin{align*} y^{\prime }&=\sqrt {25-y^{2}} \\ y \left (4\right ) &= -5 \\ \end{align*}

60.801

24674

4133

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\ \end{align*}

60.841

24675

3163

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

60.887

24676

3639

\begin{align*} y^{\prime } x&=\sqrt {16 x^{2}-y^{2}}+y \\ \end{align*}

60.969

24677

5988

\begin{align*} \left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

60.973

24678

22500

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

61.002

24679

4134

\begin{align*} y^{\prime \prime }-y&=2 \,{\mathrm e}^{x} \\ \end{align*}

61.051

24680

4130

\begin{align*} y^{\prime \prime }+y&=x^{3}+x \\ \end{align*}

61.120

24681

5979

\begin{align*} -a^{2} y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

61.138

24682

13268

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+\left (b \,x^{2}+c \right ) y+s x \\ \end{align*}

61.177

24683

3486

\begin{align*} f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= \lambda \\ \end{align*}

61.238

24684

13431

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

61.247

24685

5665

\begin{align*} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\ \end{align*}

61.298

24686

19901

\begin{align*} y^{2}+\left (y x +x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

61.298

24687

6117

\begin{align*} -a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

61.300

24688

5981

\begin{align*} -\left (p^{2}-x^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

61.322

24689

18851

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

61.326

24690

5205

\begin{align*} x^{7} y y^{\prime }&=2 x^{2}+2+5 x^{3} y \\ \end{align*}

61.361

24691

20457

\begin{align*} \left (8 {y^{\prime }}^{3}-27\right ) x&=\frac {12 {y^{\prime }}^{2}}{x} \\ \end{align*}

61.377

24692

18307

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\ \end{align*}

61.444

24693

14172

\begin{align*} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y&=0 \\ \end{align*}

61.487

24694

4136

\begin{align*} y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\ \end{align*}

61.563

24695

3653

\begin{align*} -y+y^{\prime } x&=\sqrt {4 x^{2}-y^{2}} \\ \end{align*}

61.646

24696

10023

\begin{align*} y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\ \end{align*}

61.654

24697

7462

\begin{align*} 2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

61.655

24698

14152

\begin{align*} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x&=0 \\ \end{align*}

61.805

24699

6259

\begin{align*} -\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

61.885

24700

5985

\begin{align*} -\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

61.946