2.3.249 Problems 24801 to 24900

Table 2.1029: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

24801

4459

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\ \end{align*}

65.111

24802

24576

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

65.112

24803

17291

\begin{align*} y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

65.209

24804

20757

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

65.213

24805

1344

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

65.243

24806

23076

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\ \end{align*}

65.268

24807

6148

\begin{align*} 4 y+2 \left (1-2 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\ \end{align*}

65.350

24808

12113

\begin{align*} y^{\prime }&=\frac {2 a +\sqrt {-y^{2}+4 a x}+x^{2} \sqrt {-y^{2}+4 a x}+x^{3} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

65.386

24809

12993

\begin{align*} y^{2} y^{\prime \prime }-a&=0 \\ \end{align*}

65.427

24810

13386

\begin{align*} y^{\prime } x&=a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \\ \end{align*}

65.467

24811

10144

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

65.526

24812

10401

\begin{align*} y^{\prime \prime }+y&=x^{3}+x^{2}+x +1 \\ \end{align*}

65.615

24813

5117

\begin{align*} \left (a x +b y\right ) y^{\prime }+x&=0 \\ \end{align*}

65.641

24814

3204

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

65.669

24815

6090

\begin{align*} \left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

65.684

24816

1328

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t +\frac {y}{4}&=0 \\ \end{align*}

65.760

24817

17282

\begin{align*} t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime }&=y \\ \end{align*}

65.766

24818

12534

\begin{align*} \left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y&=0 \\ \end{align*}

65.768

24819

391

\begin{align*} x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\ \end{align*}

65.790

24820

17038

\begin{align*} \frac {y^{\prime }}{t}&=\sqrt {y} \\ y \left (0\right ) &= 0 \\ \end{align*}

65.797

24821

4682

\begin{align*} y^{\prime }&=a \,x^{m}+b \,x^{n} y^{2} \\ \end{align*}

65.845

24822

2350

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

65.867

24823

14267

\begin{align*} x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\ \end{align*}

65.881

24824

5735

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

65.905

24825

16109

\begin{align*} y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

65.906

24826

11650

\begin{align*} x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right )&=0 \\ \end{align*}

65.995

24827

6158

\begin{align*} -\left (\left (2 n +1\right )^{2}-4 x^{2}\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

66.010

24828

3146

\begin{align*} 4 y+y^{\prime \prime }&=x^{2} \\ \end{align*}

66.044

24829

3159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

66.120

24830

12510

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\ \end{align*}

66.188

24831

2406

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

66.211

24832

3742

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \\ \end{align*}

66.270

24833

514

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

66.382

24834

23083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

66.405

24835

3425

\begin{align*} y^{\prime }&=-y^{3} \\ y \left (1\right ) &= 3 \\ \end{align*}

66.491

24836

23379

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

66.573

24837

12512

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

66.579

24838

5734

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

66.624

24839

4503

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

66.635

24840

17525

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (3 t \right ) \\ y \left (\frac {\pi }{12}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{12}\right ) &= 1 \\ \end{align*}

66.643

24841

4258

\begin{align*} 2 x y^{3}+\cos \left (x \right ) y+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

66.661

24842

520

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

66.799

24843

21600

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y&=x^{3}-3 x^{2}+3 x -8 \\ \end{align*}

66.829

24844

18832

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

66.871

24845

22529

\begin{align*} \tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

66.994

24846

5731

\begin{align*} -2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

67.003

24847

331

\begin{align*} 2 y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\ \end{align*}

67.020

24848

11548

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1&=0 \\ \end{align*}

67.051

24849

2404

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

67.085

24850

2346

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

67.116

24851

7790

\begin{align*} y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\ \end{align*}

67.189

24852

4480

\begin{align*} 4 y+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\ \end{align*}

67.211

24853

19781

\begin{align*} \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=r y^{\prime \prime } \\ \end{align*}

67.214

24854

3178

\begin{align*} y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

67.278

24855

7786

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\ \end{align*}

67.300

24856

17276

\begin{align*} y+2 \sqrt {t^{2}+y^{2}}-y^{\prime } t&=0 \\ \end{align*}

67.316

24857

3162

\begin{align*} -2 y+y^{\prime \prime }&={\mathrm e}^{-x} \sin \left (2 x \right ) \\ \end{align*}

67.338

24858

7772

\begin{align*} y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\ \end{align*}

67.370

24859

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

67.402

24860

5077

\begin{align*} \left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+\cos \left (x \right ) y\right ) y&=0 \\ \end{align*}

67.403

24861

5741

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

67.420

24862

13421

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

67.426

24863

20483

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\ \end{align*}

67.546

24864

4132

\begin{align*} y^{\prime \prime }+2 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

67.560

24865

4156

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (2 x \right ) x \\ \end{align*}

67.569

24866

11989

\begin{align*} y^{\prime }&=-\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \\ \end{align*}

67.592

24867

15406

\begin{align*} {y^{\prime \prime }}^{2}+{y^{\prime }}^{2}&=a^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

67.599

24868

5738

\begin{align*} y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\ \end{align*}

67.679

24869

7285

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=100 \cos \left (4 x \right ) \\ \end{align*}

67.685

24870

5415

\begin{align*} {y^{\prime }}^{2}-2 y y^{\prime }-2 x&=0 \\ \end{align*}

67.690

24871

11450

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 y x -1\right )&=0 \\ \end{align*}

67.729

24872

9276

\begin{align*} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y&=x \left (x +1\right )^{2} \\ \end{align*}

67.730

24873

5092

\begin{align*} \left (\sec \left (x \right ) \tan \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 \sin \left (x \right ) y\right ) y&=0 \\ \end{align*}

67.737

24874

23400

\begin{align*} \left (x -4\right ) y^{\prime \prime }+4 y^{\prime }-\frac {4 y}{x -4}&=0 \\ \end{align*}

67.744

24875

15357

\begin{align*} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\ \end{align*}

67.798

24876

2403

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

67.837

24877

13606

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \\ \end{align*}

67.855

24878

13291

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \\ \end{align*}

67.860

24879

1825

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=3 x^{4} \\ \end{align*}

67.865

24880

2526

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

67.868

24881

5739

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\ \end{align*}

67.898

24882

20468

\begin{align*} {y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\ \end{align*}

68.022

24883

1820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=\cos \left (x \right ) x^{3} \\ \end{align*}

68.033

24884

1340

\begin{align*} y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\ \end{align*}

68.071

24885

5733

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\ \end{align*}

68.079

24886

920

\begin{align*} x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\ x \left (0\right ) &= 10 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

68.105

24887

2349

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

68.148

24888

7086

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\ \end{align*}

68.169

24889

2905

\begin{align*} 2 x +3 y+2+\left (-x +y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ \end{align*}

68.180

24890

23965

\begin{align*} 3 y^{2}-2 x^{2}&=2 y y^{\prime } x \\ \end{align*}

68.194

24891

13343

\begin{align*} \left (a \coth \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \coth \left (\mu x \right ) y-d^{2}+c d \coth \left (\mu x \right ) \\ \end{align*}

68.246

24892

5779

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\ \end{align*}

68.253

24893

6145

\begin{align*} a y-\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

68.302

24894

17530

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

68.317

24895

4250

\begin{align*} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

68.421

24896

398

\begin{align*} x^{\prime \prime }+6 x^{\prime }+45 x&=50 \cos \left (\omega t \right ) \\ \end{align*}

68.467

24897

6047

\begin{align*} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

68.470

24898

21822

\begin{align*} \left (x^{2}+y^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\ \end{align*}

68.625

24899

22020

\begin{align*} y^{\prime }&=\frac {y^{2}}{y x +\left (x y^{2}\right )^{{1}/{3}}} \\ \end{align*}

68.626

24900

15555

\begin{align*} y^{\prime }&=\left (y x \right )^{{1}/{3}} \\ \end{align*}

68.642