| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24801 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.111 |
|
| 24802 |
\begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.112 |
|
| 24803 |
\begin{align*}
y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
65.209 |
|
| 24804 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.213 |
|
| 24805 |
\begin{align*}
y^{\prime \prime }+4 y&=g \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.243 |
|
| 24806 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.268 |
|
| 24807 |
\begin{align*}
4 y+2 \left (1-2 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.350 |
|
| 24808 |
\begin{align*}
y^{\prime }&=\frac {2 a +\sqrt {-y^{2}+4 a x}+x^{2} \sqrt {-y^{2}+4 a x}+x^{3} \sqrt {-y^{2}+4 a x}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
65.386 |
|
| 24809 |
\begin{align*}
y^{2} y^{\prime \prime }-a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.427 |
|
| 24810 |
\begin{align*}
y^{\prime } x&=a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.467 |
|
| 24811 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.526 |
|
| 24812 |
\begin{align*}
y^{\prime \prime }+y&=x^{3}+x^{2}+x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.615 |
|
| 24813 |
\begin{align*}
\left (a x +b y\right ) y^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.641 |
|
| 24814 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.669 |
|
| 24815 |
\begin{align*}
\left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
65.684 |
|
| 24816 |
\begin{align*}
t^{2} y^{\prime \prime }+2 y^{\prime } t +\frac {y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.760 |
|
| 24817 |
\begin{align*}
t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.766 |
|
| 24818 |
\begin{align*}
\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.768 |
|
| 24819 |
\begin{align*}
x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.790 |
|
| 24820 |
\begin{align*}
\frac {y^{\prime }}{t}&=\sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.797 |
|
| 24821 |
\begin{align*}
y^{\prime }&=a \,x^{m}+b \,x^{n} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.845 |
|
| 24822 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
65.867 |
|
| 24823 |
\begin{align*}
x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.881 |
|
| 24824 |
\begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.905 |
|
| 24825 |
\begin{align*}
y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.906 |
|
| 24826 |
\begin{align*}
x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
65.995 |
|
| 24827 |
\begin{align*}
-\left (\left (2 n +1\right )^{2}-4 x^{2}\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.010 |
|
| 24828 |
\begin{align*}
4 y+y^{\prime \prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.044 |
|
| 24829 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
66.120 |
|
| 24830 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
66.188 |
|
| 24831 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.211 |
|
| 24832 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.270 |
|
| 24833 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.382 |
|
| 24834 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.405 |
|
| 24835 |
\begin{align*}
y^{\prime }&=-y^{3} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.491 |
|
| 24836 |
\begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.573 |
|
| 24837 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
66.579 |
|
| 24838 |
\begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.624 |
|
| 24839 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.635 |
|
| 24840 |
\begin{align*}
y^{\prime \prime }+9 y&=\csc \left (3 t \right ) \\
y \left (\frac {\pi }{12}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{12}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.643 |
|
| 24841 |
\begin{align*}
2 x y^{3}+\cos \left (x \right ) y+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
66.661 |
|
| 24842 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.799 |
|
| 24843 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y&=x^{3}-3 x^{2}+3 x -8 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
66.829 |
|
| 24844 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.871 |
|
| 24845 |
\begin{align*}
\tan \left (y\right )-\tan \left (y\right )^{2} \cos \left (x \right )-x \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.994 |
|
| 24846 |
\begin{align*}
-2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.003 |
|
| 24847 |
\begin{align*}
2 y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.020 |
|
| 24848 |
\begin{align*}
\left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.051 |
|
| 24849 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.085 |
|
| 24850 |
\begin{align*}
y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
67.116 |
|
| 24851 |
\begin{align*}
y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.189 |
|
| 24852 |
\begin{align*}
4 y+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.211 |
|
| 24853 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=r y^{\prime \prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.214 |
|
| 24854 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.278 |
|
| 24855 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.300 |
|
| 24856 |
\begin{align*}
y+2 \sqrt {t^{2}+y^{2}}-y^{\prime } t&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.316 |
|
| 24857 |
\begin{align*}
-2 y+y^{\prime \prime }&={\mathrm e}^{-x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.338 |
|
| 24858 |
\begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.370 |
|
| 24859 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.402 |
|
| 24860 |
\begin{align*}
\left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+\cos \left (x \right ) y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.403 |
|
| 24861 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.420 |
|
| 24862 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
67.426 |
|
| 24863 |
\begin{align*}
\left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
67.546 |
|
| 24864 |
\begin{align*}
y^{\prime \prime }+2 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.560 |
|
| 24865 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (2 x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.569 |
|
| 24866 |
\begin{align*}
y^{\prime }&=-\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.592 |
|
| 24867 |
\begin{align*}
{y^{\prime \prime }}^{2}+{y^{\prime }}^{2}&=a^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.599 |
|
| 24868 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.679 |
|
| 24869 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=100 \cos \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.685 |
|
| 24870 |
\begin{align*}
{y^{\prime }}^{2}-2 y y^{\prime }-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.690 |
|
| 24871 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 y x -1\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.729 |
|
| 24872 |
\begin{align*}
\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y&=x \left (x +1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.730 |
|
| 24873 |
\begin{align*}
\left (\sec \left (x \right ) \tan \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 \sin \left (x \right ) y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.737 |
|
| 24874 |
\begin{align*}
\left (x -4\right ) y^{\prime \prime }+4 y^{\prime }-\frac {4 y}{x -4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.744 |
|
| 24875 |
\begin{align*}
3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.798 |
|
| 24876 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.837 |
|
| 24877 |
\begin{align*}
y y^{\prime }&=\left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
67.855 |
|
| 24878 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.860 |
|
| 24879 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=3 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.865 |
|
| 24880 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
67.868 |
|
| 24881 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.898 |
|
| 24882 |
\begin{align*}
{y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.022 |
|
| 24883 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=\cos \left (x \right ) x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.033 |
|
| 24884 |
\begin{align*}
y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.071 |
|
| 24885 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.079 |
|
| 24886 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\
x \left (0\right ) &= 10 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.105 |
|
| 24887 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
68.148 |
|
| 24888 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.169 |
|
| 24889 |
\begin{align*}
2 x +3 y+2+\left (-x +y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.180 |
|
| 24890 |
\begin{align*}
3 y^{2}-2 x^{2}&=2 y y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.194 |
|
| 24891 |
\begin{align*}
\left (a \coth \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \coth \left (\mu x \right ) y-d^{2}+c d \coth \left (\mu x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.246 |
|
| 24892 |
\begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.253 |
|
| 24893 |
\begin{align*}
a y-\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
68.302 |
|
| 24894 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.317 |
|
| 24895 |
\begin{align*}
\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
68.421 |
|
| 24896 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+45 x&=50 \cos \left (\omega t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.467 |
|
| 24897 |
\begin{align*}
-\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
68.470 |
|
| 24898 |
\begin{align*}
\left (x^{2}+y^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.625 |
|
| 24899 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{y x +\left (x y^{2}\right )^{{1}/{3}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.626 |
|
| 24900 |
\begin{align*}
y^{\prime }&=\left (y x \right )^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.642 |
|