| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 25101 |
\begin{align*}
x -1-\left (3 x -2 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
79.972 |
|
| 25102 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=\sin \left (t \right )+{\mathrm e}^{2 t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
79.973 |
|
| 25103 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
79.980 |
|
| 25104 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
79.986 |
|
| 25105 |
\begin{align*}
y^{\prime \prime }-4 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.075 |
|
| 25106 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
80.147 |
|
| 25107 |
\begin{align*}
y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}}+b \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.147 |
|
| 25108 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.162 |
|
| 25109 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.164 |
|
| 25110 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.199 |
|
| 25111 |
\begin{align*}
x^{n +1} y^{\prime }&=x^{2 n} a y^{2}+c \,x^{m}+d \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.228 |
|
| 25112 |
\begin{align*}
9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.254 |
|
| 25113 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.257 |
|
| 25114 |
\begin{align*}
4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.441 |
|
| 25115 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.471 |
|
| 25116 |
\begin{align*}
t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.533 |
|
| 25117 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.605 |
|
| 25118 |
\begin{align*}
x -4 y-3-\left (x -6 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.707 |
|
| 25119 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
80.750 |
|
| 25120 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.780 |
|
| 25121 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
80.803 |
|
| 25122 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
80.920 |
|
| 25123 |
\begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.001 |
|
| 25124 |
\begin{align*}
x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \,x^{n}+c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
81.127 |
|
| 25125 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.166 |
|
| 25126 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.168 |
|
| 25127 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
81.171 |
|
| 25128 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.234 |
|
| 25129 |
\begin{align*}
a^{2} y^{\prime \prime } y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.252 |
|
| 25130 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=5 x^{2} \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.274 |
|
| 25131 |
\begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
81.432 |
|
| 25132 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.435 |
|
| 25133 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.466 |
|
| 25134 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=8 x \ln \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.542 |
|
| 25135 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.543 |
|
| 25136 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
81.651 |
|
| 25137 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
81.653 |
|
| 25138 |
\begin{align*}
16 x +15 y+\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
81.763 |
|
| 25139 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.898 |
|
| 25140 |
\begin{align*}
y^{\prime }&=\frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
81.908 |
|
| 25141 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.988 |
|
| 25142 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
81.994 |
|
| 25143 |
\begin{align*}
{y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
82.002 |
|
| 25144 |
\begin{align*}
{y^{\prime }}^{3}+y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.097 |
|
| 25145 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.105 |
|
| 25146 |
\begin{align*}
\left (b \,x^{2}+a \right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.118 |
|
| 25147 |
\begin{align*}
b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
82.178 |
|
| 25148 |
\begin{align*}
y^{\prime \prime }+2 i y^{\prime }+y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.181 |
|
| 25149 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.218 |
|
| 25150 |
\begin{align*}
\left (a \tan \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.405 |
|
| 25151 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=-50 \sin \left (5 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.411 |
|
| 25152 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.427 |
|
| 25153 |
\begin{align*}
-y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.446 |
|
| 25154 |
\begin{align*}
p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
82.457 |
|
| 25155 |
\begin{align*}
y^{\prime }&=\frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.506 |
|
| 25156 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.524 |
|
| 25157 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.556 |
|
| 25158 |
\begin{align*}
y^{\prime \prime }+2 y&=6 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.576 |
|
| 25159 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.674 |
|
| 25160 |
\begin{align*}
\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
82.694 |
|
| 25161 |
\begin{align*}
y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{x m}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.695 |
|
| 25162 |
\begin{align*}
2 x^{2} y^{\prime }&=2 y x +\left (-x \cot \left (x \right )+1\right ) \left (x^{2}-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.721 |
|
| 25163 |
\begin{align*}
a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.781 |
|
| 25164 |
\begin{align*}
\left (x +1\right ) y^{\prime }-1-y&=\left (x +1\right ) \sqrt {1+y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.820 |
|
| 25165 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
82.848 |
|
| 25166 |
\begin{align*}
x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x&=2 \ln \left (x \right ) \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
82.930 |
|
| 25167 |
\begin{align*}
2 x^{3} y^{\prime }&=y \left (x^{2}-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.931 |
|
| 25168 |
\begin{align*}
\sin \left (x \right ) y-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
82.965 |
|
| 25169 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
82.997 |
|
| 25170 |
\begin{align*}
y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
83.000 |
|
| 25171 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.013 |
|
| 25172 |
\begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
83.036 |
|
| 25173 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.047 |
|
| 25174 |
\begin{align*}
1+\frac {1}{1+x^{2}+4 y x +y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 y x +y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
83.207 |
|
| 25175 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.371 |
|
| 25176 |
\begin{align*}
2 y^{\prime }+\cot \left (x \right ) y&=\frac {8 \cos \left (x \right )^{3}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.427 |
|
| 25177 |
\begin{align*}
\left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
83.655 |
|
| 25178 |
\begin{align*}
y^{\prime \prime } x +\frac {y^{\prime }}{2}+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.726 |
|
| 25179 |
\begin{align*}
x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.734 |
|
| 25180 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.796 |
|
| 25181 |
\begin{align*}
y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
83.815 |
|
| 25182 |
\begin{align*}
y y^{\prime }+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}}&=-\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
83.901 |
|
| 25183 |
\begin{align*}
x^{\prime \prime }&=x^{2}-4 x+\lambda \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
84.101 |
|
| 25184 |
\begin{align*}
x^{2}-3 y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.206 |
|
| 25185 |
\begin{align*}
y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.326 |
|
| 25186 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t}+{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.342 |
|
| 25187 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.378 |
|
| 25188 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y&=x +\frac {1}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
84.526 |
|
| 25189 |
\begin{align*}
y y^{\prime }+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
84.536 |
|
| 25190 |
\begin{align*}
a^{2} {y^{\prime \prime }}^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
84.609 |
|
| 25191 |
\begin{align*}
v^{2}+x \left (x +v\right ) v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.643 |
|
| 25192 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
84.746 |
|
| 25193 |
\begin{align*}
y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
84.755 |
|
| 25194 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
84.765 |
|
| 25195 |
\begin{align*}
x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
84.894 |
|
| 25196 |
\begin{align*}
\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
85.113 |
|
| 25197 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
85.202 |
|
| 25198 |
\begin{align*}
y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
85.275 |
|
| 25199 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
85.401 |
|
| 25200 |
\begin{align*}
f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
85.413 |
|