2.3.252 Problems 25101 to 25200

Table 2.1035: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

25101

24360

\begin{align*} x -1-\left (3 x -2 y-5\right ) y^{\prime }&=0 \\ \end{align*}

79.972

25102

2603

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=\sin \left (t \right )+{\mathrm e}^{2 t} t \\ \end{align*}

79.973

25103

15163

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\ \end{align*}

79.980

25104

7768

\begin{align*} y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\ \end{align*}

79.986

25105

3118

\begin{align*} y^{\prime \prime }-4 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

80.075

25106

2525

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

80.147

25107

12880

\begin{align*} y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}}+b \\ \end{align*}

80.147

25108

2598

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\ \end{align*}

80.162

25109

12664

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \\ \end{align*}

80.164

25110

5785

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

80.199

25111

13225

\begin{align*} x^{n +1} y^{\prime }&=x^{2 n} a y^{2}+c \,x^{m}+d \\ \end{align*}

80.228

25112

12551

\begin{align*} 9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y&=0 \\ \end{align*}

80.254

25113

1342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

80.257

25114

344

\begin{align*} 4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\ \end{align*}

80.441

25115

14023

\begin{align*} -y+y^{\prime } x&=\sqrt {x^{2}-y^{2}} \\ \end{align*}

80.471

25116

17290

\begin{align*} t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

80.533

25117

4473

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \\ \end{align*}

80.605

25118

24348

\begin{align*} x -4 y-3-\left (x -6 y-5\right ) y^{\prime }&=0 \\ \end{align*}

80.707

25119

19202

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

80.750

25120

882

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\ \end{align*}

80.780

25121

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

80.803

25122

2351

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

80.920

25123

23088

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\ \end{align*}

81.001

25124

13220

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \,x^{n}+c \\ \end{align*}

81.127

25125

4456

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\ \end{align*}

81.166

25126

7782

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ \end{align*}

81.168

25127

12519

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\ \end{align*}

81.171

25128

5784

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

81.234

25129

20570

\begin{align*} a^{2} y^{\prime \prime } y^{\prime }&=x \\ \end{align*}

81.252

25130

20870

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=5 x^{2} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

81.274

25131

17813

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

81.432

25132

7079

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\ \end{align*}

81.435

25133

1339

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\ \end{align*}

81.466

25134

3775

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=8 x \ln \left (x \right )^{2} \\ \end{align*}

81.542

25135

883

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \\ \end{align*}

81.543

25136

20430

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

81.651

25137

5923

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

81.653

25138

24180

\begin{align*} 16 x +15 y+\left (3 x +y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= -3 \\ \end{align*}

81.763

25139

3745

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

81.898

25140

1664

\begin{align*} y^{\prime }&=\frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \\ \end{align*}

81.908

25141

7578

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\ \end{align*}

81.988

25142

8949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

81.994

25143

10195

\begin{align*} {y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\ \end{align*}

82.002

25144

5615

\begin{align*} {y^{\prime }}^{3}+y^{\prime }-y&=0 \\ \end{align*}

82.097

25145

3171

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

82.105

25146

5999

\begin{align*} \left (b \,x^{2}+a \right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

82.118

25147

6261

\begin{align*} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

82.178

25148

8907

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+y&=x \\ \end{align*}

82.181

25149

3759

\begin{align*} y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\ \end{align*}

82.218

25150

13399

\begin{align*} \left (a \tan \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right ) \\ \end{align*}

82.405

25151

7577

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=-50 \sin \left (5 t \right ) \\ \end{align*}

82.411

25152

7811

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

82.427

25153

6283

\begin{align*} -y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\ \end{align*}

82.446

25154

6074

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

82.457

25155

11912

\begin{align*} y^{\prime }&=\frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \\ \end{align*}

82.506

25156

7854

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\ \end{align*}

82.524

25157

3209

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

82.556

25158

844

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

82.576

25159

1834

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

82.674

25160

20745

\begin{align*} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\ \end{align*}

82.694

25161

3756

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{x m}}{x^{2}+1} \\ \end{align*}

82.695

25162

4953

\begin{align*} 2 x^{2} y^{\prime }&=2 y x +\left (-x \cot \left (x \right )+1\right ) \left (x^{2}-y^{2}\right ) \\ \end{align*}

82.721

25163

20177

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

82.781

25164

6992

\begin{align*} \left (x +1\right ) y^{\prime }-1-y&=\left (x +1\right ) \sqrt {1+y} \\ \end{align*}

82.820

25165

6072

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\ \end{align*}

82.848

25166

18341

\begin{align*} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x&=2 \ln \left (x \right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

82.930

25167

4988

\begin{align*} 2 x^{3} y^{\prime }&=y \left (x^{2}-y^{2}\right ) \\ \end{align*}

82.931

25168

3012

\begin{align*} \sin \left (x \right ) y-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

82.965

25169

9888

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y&=0 \\ \end{align*}

82.997

25170

13598

\begin{align*} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}} \\ \end{align*}

83.000

25171

5769

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\ \end{align*}

83.013

25172

527

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ \end{align*}

83.036

25173

2600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\ \end{align*}

83.047

25174

7533

\begin{align*} 1+\frac {1}{1+x^{2}+4 y x +y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 y x +y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

83.207

25175

3189

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\ \end{align*}

83.371

25176

3667

\begin{align*} 2 y^{\prime }+\cot \left (x \right ) y&=\frac {8 \cos \left (x \right )^{3}}{y} \\ \end{align*}

83.427

25177

20443

\begin{align*} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\ \end{align*}

83.655

25178

7687

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+2 y&=0 \\ \end{align*}

83.726

25179

24311

\begin{align*} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

83.734

25180

7784

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

83.796

25181

7970

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\ \end{align*}

83.815

25182

13579

\begin{align*} y y^{\prime }+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}}&=-\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \\ \end{align*}

83.901

25183

21789

\begin{align*} x^{\prime \prime }&=x^{2}-4 x+\lambda \\ \end{align*}

84.101

25184

21393

\begin{align*} x^{2}-3 y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

84.206

25185

5740

\begin{align*} y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\ \end{align*}

84.326

25186

2605

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t}+{\mathrm e}^{2 t} \\ \end{align*}

84.342

25187

7302

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\ \end{align*}

84.378

25188

8771

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

84.526

25189

13582

\begin{align*} y y^{\prime }+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \\ \end{align*}

84.536

25190

6585

\begin{align*} a^{2} {y^{\prime \prime }}^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

84.609

25191

24162

\begin{align*} v^{2}+x \left (x +v\right ) v^{\prime }&=0 \\ \end{align*}

84.643

25192

2604

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \\ \end{align*}

84.746

25193

2955

\begin{align*} y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

84.755

25194

3747

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\ \end{align*}

84.765

25195

13850

\begin{align*} x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\ \end{align*}

84.894

25196

1755

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

85.113

25197

4500

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

85.202

25198

13520

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

85.275

25199

23085

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\ \end{align*}

85.401

25200

11847

\begin{align*} f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

85.413