Internal
problem
ID
[7901]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
28
Date
solved
:
Monday, October 21, 2024 at 04:31:50 PM
CAS
classification
:
[`y=_G(x,y')`]
\begin{align*}
\tag{1} y^{\prime }&=\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}} \\
\tag{2} y^{\prime }&=-\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}} \\
\end{align*}
Now each of the above is solved
separately.
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & {y^{\prime }}^{2}+y^{2}=\sec \left (x \right )^{4} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}}, y^{\prime }=-\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=-\frac {\sqrt {1-y^{2} \cos \left (x \right )^{4}}}{\cos \left (x \right )^{2}} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]
4.32.3 Maple dsolve solution
Solving time : 0.073
(sec)
Leaf size : maple_leaf_size
dsolve(diff(y(x),x)^2+y(x)^2 = sec(x)^4,
y(x),singsol=all)
\[ \text {No solution found} \]
4.32.4 Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{D[y[x],x]^2+y[x]^2==Sec[x]^4,{}},
y[x],x,IncludeSingularSolutions->True]
Not solved