2.2.59 Problems 5801 to 5900

Table 2.119: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5801

\[ {}y^{\prime } x = y \]

[_separable]

1.082

5802

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

0.486

5803

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

1.753

5804

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

0.471

5805

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

1.723

5806

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.553

5807

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.713

5808

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

0.786

5809

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

1.089

5810

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.894

5811

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.101

5812

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.441

5813

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.303

5814

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.504

5815

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698

5816

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.076

5817

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

0.480

5818

\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

[‘y=_G(x,y’)‘]

0.658

5819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

1.669

5820

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

1.409

5821

\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

0.587

5822

\[ {}y^{\prime } x = \frac {1}{y^{3}} \]

[_separable]

1.660

5823

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

1.042

5824

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

1.272

5825

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

1.671

5826

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

3.795

5827

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

2.130

5828

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

94.988

5829

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

1.535

5830

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

2.028

5831

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

2.080

5832

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

3.143

5833

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

1.302

5834

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

1.947

5835

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

1.550

5836

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

3.867

5837

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

3.229

5838

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

1.465

5839

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

1.837

5840

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

1.281

5841

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1.715

5842

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

0.421

5843

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

1.123

5844

\[ {}y^{\prime } = \sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

20.115

5845

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

1.463

5846

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

0.694

5847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

0.621

5848

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

5.654

5849

\[ {}y^{\prime } = x y^{3} \]

[_separable]

1.890

5850

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

1.946

5851

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

1.961

5852

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

1.943

5853

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

0.813

5854

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

1.819

5855

\[ {}x^{\prime }+x t = {\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

0.474

5856

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

1.355

5857

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

6.832

5858

\[ {}x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.090

5859

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

1.179

5860

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

0.933

5861

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

0.898

5862

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

1.299

5863

\[ {}y^{\prime } x +2 y = \frac {1}{x^{3}} \]

[_linear]

1.097

5864

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

0.863

5865

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

1.365

5866

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

1.222

5867

\[ {}y^{\prime } x +3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

1.563

5868

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x = 0 \]

[_separable]

1.149

5869

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

2.981

5870

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

1.222

5871

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

1.186

5872

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

1.422

5873

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

1.354

5874

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

3.486

5875

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

2.435

5876

\[ {}y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x \]
i.c.

[_linear]

9.162

5877

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4.026

5878

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

1.306

5879

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

1.209

5880

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

1.690

5881

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

0.490

5882

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

1.146

5883

\[ {}x^{{10}/{3}}-2 y+y^{\prime } x = 0 \]

[_linear]

1.247

5884

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

2.826

5885

\[ {}y \,{\mathrm e}^{y x}+2 x +\left (x \,{\mathrm e}^{y x}-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.256

5886

\[ {}y^{\prime }+y x = 0 \]

[_separable]

0.182

5887

\[ {}y^{2}+\left (2 y x +\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.231

5888

\[ {}2 x +y \cos \left (y x \right )+\left (x \cos \left (y x \right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.276

5889

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

0.186

5890

\[ {}2 y x +3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

0.159

5891

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.287

5892

\[ {}{\mathrm e}^{x} \sin \left (y\right )-3 x^{2}+\left ({\mathrm e}^{x} \cos \left (y\right )+\frac {1}{3 y^{{2}/{3}}}\right ) y^{\prime } = 0 \]

[_exact]

0.365

5893

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

10.079

5894

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

0.182

5895

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

0.249

5896

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

0.186

5897

\[ {}y \,{\mathrm e}^{y x}-\frac {1}{y}+\left (x \,{\mathrm e}^{y x}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

0.250

5898

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.177

5899

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 y x -\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

66.511

5900

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{-1+y} \]

[_separable]

1.388