2.2.60 Problems 5901 to 6000

Table 2.121: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

5901

(x2+y2+1)y+2xy+x2+3=0

[_exact, _rational]

5902

ycos(x)+y+(1+sin(x))cos(x)=0

[_linear]

5903

y2+12x2y+(2xy+4x3)y=0

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5904

(x2y)y+x=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5905

(x2y)y4xy=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5906

xyy+x2+y2=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

2xyy+3x2y2=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

(2xy3x4)y+2x3yy4=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5909

(xy1)2xy+(1+x2y2)y=0

[[_homogeneous, ‘class G‘], _rational]

5910

(x2+y2)y+2x(2x+y)=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5911

3xy2y+y32x=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5912

2y3y+xy2x3=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5913

(2xy3+xy+x2)yxy+y2=0

[_rational]

5914

(2y3+y)y2x3x=0

[_separable]

5915

yexy+ex=0

[_separable]

5916

y+2y=0

[[_2nd_order, _missing_x]]

5917

y3y+2y=0

[[_2nd_order, _missing_x]]

5918

yy=0

[[_2nd_order, _missing_x]]

5919

6y11y+4y=0

[[_2nd_order, _missing_x]]

5920

y+2yy=0

[[_2nd_order, _missing_x]]

5921

y+y10y6y=0

[[_3rd_order, _missing_x]]

5922

yy4y+4y=0

[[_high_order, _missing_x]]

5923

y+4y+y4y2y=0

[[_high_order, _missing_x]]

5924

ya2y=0

[[_high_order, _missing_x]]

5925

y2ky2y=0

[[_2nd_order, _missing_x]]

5926

y+4ky12k2y=0

[[_2nd_order, _missing_x]]

5927

y=0

[[_high_order, _quadrature]]

5928

y+4y+4y=0

[[_2nd_order, _missing_x]]

5929

3y+5y+yy=0

[[_3rd_order, _missing_x]]

5930

y6y+12y8y=0

[[_3rd_order, _missing_x]]

5931

y2ay+a2y=0

[[_2nd_order, _missing_x]]

5932

y+3y=0

[[_high_order, _missing_x]]

5933

y2y=0

[[_high_order, _missing_x]]

5934

y+2y11y12y+36y=0

[[_high_order, _missing_x]]

5935

36y37y+4y+5y=0

[[_high_order, _missing_x]]

5936

y8y+36y=0

[[_high_order, _missing_x]]

5937

y2y+5y=0

[[_2nd_order, _missing_x]]

5938

yy+y=0

[[_2nd_order, _missing_x]]

5939

y+5y+6y=0

[[_high_order, _missing_x]]

5940

y4y+20y=0

[[_2nd_order, _missing_x]]

5941

y+4y+4y=0

[[_high_order, _missing_x]]

5942

y+8y=0

[[_3rd_order, _missing_x]]

5943

y+4y=0

[[_high_order, _missing_x]]

5944

y(5)+2y+y=0

[[_high_order, _missing_x]]

5945

y=0
i.c.

[[_2nd_order, _quadrature]]

5946

y+4y+4y=0
i.c.

[[_2nd_order, _missing_x]]

5947

y2y+5y=0
i.c.

[[_2nd_order, _missing_x]]

5948

y4y+20y=0
i.c.

[[_2nd_order, _missing_x]]

5949

3y+5y+yy=0
i.c.

[[_3rd_order, _missing_x]]

5950

y+3y+2y=4

[[_2nd_order, _missing_x]]

5951

y+3y+2y=12ex

[[_2nd_order, _with_linear_symmetries]]

5952

y+3y+2y=eix

[[_2nd_order, _with_linear_symmetries]]

5953

y+3y+2y=sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5954

y+3y+2y=cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5955

y+3y+2y=8+6ex+2sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5956

y+y+y=x2

[[_2nd_order, _with_linear_symmetries]]

5957

y2y8y=9xex+10ex

[[_2nd_order, _linear, _nonhomogeneous]]

5958

y3y=2e2xsin(x)

[[_2nd_order, _missing_y]]

5959

y+y=x2+2x

[[_2nd_order, _missing_y]]

5960

y+y=x+sin(2x)

[[_2nd_order, _missing_y]]

5961

y+y=4xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5962

y+4y=xsin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

5963

y+2y+y=x2ex

[[_2nd_order, _linear, _nonhomogeneous]]

5964

y+3y+2y=e2x+x2

[[_2nd_order, _linear, _nonhomogeneous]]

5965

y3y+2y=xex

[[_2nd_order, _linear, _nonhomogeneous]]

5966

y+y6y=x+e2x

[[_2nd_order, _with_linear_symmetries]]

5967

y+y=sin(x)+ex

[[_2nd_order, _linear, _nonhomogeneous]]

5968

y+y=sin(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

5969

y+y=sin(2x)sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5970

y5y6y=e3x
i.c.

[[_2nd_order, _with_linear_symmetries]]

5971

yy2y=5sin(x)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5972

y+9y=8cos(x)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5973

y5y+6y=ex(2x3)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5974

y3y+2y=ex
i.c.

[[_2nd_order, _with_linear_symmetries]]

5975

y+y=sec(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5976

y+y=cot(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5977

y+y=sec(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

5978

yy=sin(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

5979

y+y=sin(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

5980

y+3y+2y=12ex

[[_2nd_order, _with_linear_symmetries]]

5981

y+2y+y=x2ex

[[_2nd_order, _linear, _nonhomogeneous]]

5982

y+y=4xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5983

y+2y+y=exln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5984

y+y=csc(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5985

y+y=tan(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

5986

y+2y+y=exx

[[_2nd_order, _linear, _nonhomogeneous]]

5987

y+y=sec(x)csc(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5988

y2y+y=exln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

5989

y3y+2y=cos(ex)

[[_2nd_order, _linear, _nonhomogeneous]]

5990

x2yyx+y=x

[[_2nd_order, _with_linear_symmetries]]

5991

y2yx+2yx2=xln(x)

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

x2y+yx4y=x3

[[_2nd_order, _with_linear_symmetries]]

5993

x2y+yxy=x2ex

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

2x2y+3yxy=1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5995

y=2yy

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5996

y3y=k

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5997

yy=y21

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5998

x2y+yx=1

[[_2nd_order, _missing_y]]

5999

xyy=x2

[[_2nd_order, _missing_y]]

6000

(1+y)y=3y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]