2.2.60 Problems 5901 to 6000

Table 2.121: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5901

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

0.927

5902

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 y x -3 x^{2} = 0 \]

[_exact, _rational]

2.230

5903

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

1.496

5904

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2.179

5905

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

1.227

5906

\[ {}\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.619

5907

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.151

5908

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.547

5909

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 y x = 0 \]

[[_Emden, _Fowler]]

1.267

5910

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (1+t \right ) x^{\prime }-\left (t -2\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.677

5911

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.627

5912

\[ {}\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.490

5913

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.940

5914

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.444

5915

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

[_separable]

0.503

5916

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.431

5917

\[ {}z^{\prime }-x^{2} z = 0 \]

[_separable]

0.464

5918

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.555

5919

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.573

5920

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.561

5921

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

[_Lienard]

0.563

5922

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.572

5923

\[ {}\left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.663

5924

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

0.609

5925

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.651

5926

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.637

5927

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

1.786

5928

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-y^{\prime } x +2 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.753

5929

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

[_separable]

0.500

5930

\[ {}y^{\prime }-2 y x = 0 \]

[_separable]

0.549

5931

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.596

5932

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

0.638

5933

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.648

5934

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.632

5935

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]
i.c.

[_separable]

0.654

5936

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]
i.c.

[_separable]

0.586

5937

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.872

5938

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.711

5939

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.204

5940

\[ {}y^{\prime }-y x = \sin \left (x \right ) \]

[_linear]

0.597

5941

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

[_linear]

0.543

5942

\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.532

5943

\[ {}y^{\prime \prime }-2 y^{\prime } x +3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

5944

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = \cos \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.655

5945

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.590

5946

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.283

5947

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

5948

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.704

5949

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3.136

5950

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

[[_3rd_order, _missing_x]]

0.066

5951

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.282

5952

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

[[_high_order, _missing_x]]

0.077

5953

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

[[_3rd_order, _missing_x]]

0.070

5954

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.763

5955

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.260

5956

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.477

5957

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.196

5958

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.274

5959

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

0.899

5960

\[ {}x^{2} y^{\prime }+2 y x -x +1 = 0 \]
i.c.

[_linear]

1.180

5961

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.127

5962

\[ {}x^{2} y^{\prime }+2 y x = \sinh \left (x \right ) \]
i.c.

[_linear]

1.382

5963

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

0.952

5964

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

0.899

5965

\[ {}\left (x^{2}+1\right ) y^{\prime } = y x +1 \]

[_linear]

2.014

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

1.787

5967

\[ {}3 y^{\prime } x +y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.910

5968

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.883

5969

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.065

5970

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.962

5971

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.268

5972

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1.043

5973

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

1.140

5974

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.996

5975

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.907

5976

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

1.173

5977

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

1.208

5978

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

[_Laguerre]

0.510

5979

\[ {}y^{\prime } x = x^{2}+2 x -3 \]

[_quadrature]

0.307

5980

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

1.920

5981

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

0.929

5982

\[ {}-y+y^{\prime } x = x^{2} \]

[_linear]

1.010

5983

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

0.487

5984

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

3.465

5985

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

73.737

5986

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x = x \]

[_separable]

1.122

5987

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

1.620

5988

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

1.516

5989

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.521

5990

\[ {}y^{\prime } x +3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.579

5991

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

[_separable]

1.592

5992

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

1.913

5993

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

1.491

5994

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.444

5995

\[ {}x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \]

[_separable]

1.312

5996

\[ {}\left (2 y-x \right ) y^{\prime } = y+2 x \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.141

5997

\[ {}y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.175

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.180

5999

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.763

6000

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

46.126