2.2.6 Problems 501 to 600

Table 2.13: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

501

\[ {}5 x y^{\prime \prime }+\left (30+3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.915

502

\[ {}x y^{\prime \prime }-\left (4+x \right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

0.983

503

\[ {}2 x y^{\prime \prime }-\left (6+2 x \right ) y^{\prime }+y = 0 \]

[_Laguerre]

1.375

504

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.948

505

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.946

506

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

507

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.819

508

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

509

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.049

510

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}-3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.472

511

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.039

512

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.982

513

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.869

514

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.647

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

0.960

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.526

517

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (8+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.903

518

\[ {}36 x^{2} y^{\prime \prime }+60 x y^{\prime }+\left (9 x^{3}-5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.329

519

\[ {}16 x^{2} y^{\prime \prime }+24 x y^{\prime }+\left (144 x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.731

520

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.500

521

\[ {}4 x^{2} y^{\prime \prime }-12 x y^{\prime }+\left (15+16 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.883

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.773

523

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-2 \left (-x^{5}+14\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.566

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

[[_Emden, _Fowler]]

1.011

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.940

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

1.656

527

\[ {}y^{\prime } = y^{2}+x^{2} \]

[[_Riccati, _special]]

1.091

528

\[ {}y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_Riccati, _special]]

1.968

529

\[ {}y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_Riccati, _special]]

1.547

530

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.292

531

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.333

532

\[ {}x^{\prime \prime }-x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.275

533

\[ {}x^{\prime \prime }+8 x^{\prime }+15 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.310

534

\[ {}x^{\prime \prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

535

\[ {}x^{\prime \prime }+4 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

536

\[ {}x^{\prime \prime }+x = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

537

\[ {}x^{\prime \prime }+9 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.323

538

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

539

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.291

540

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=6 x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.469

541

\[ {}x^{\prime \prime }+6 x^{\prime }+25 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.348

542

\[ {}x^{\prime \prime }-6 x^{\prime }+8 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.283

543

\[ {}x^{\prime \prime }-4 x = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.321

544

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.391

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.294

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.369

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.673

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.504

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.486

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

0.515

551

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

552

\[ {}x^{\prime \prime }+6 x^{\prime }+18 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

553

\[ {}x^{\prime \prime }+9 x = 6 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

554

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25} = 6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.218

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.217

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.229

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.236

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+x t = 0 \]
i.c.

[_Lienard]

0.246

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.271

561

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.070

562

\[ {}x^{\prime \prime }+2 x^{\prime }+x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.683

563

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.988

564

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.253

565

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.764

566

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.545

567

\[ {}x^{\prime \prime }+2 x^{\prime }+x = t +\delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.245

568

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.499

569

\[ {}x^{\prime \prime }+9 x = \delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

570

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = \delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.014

571

\[ {}x^{\prime \prime }+2 x^{\prime }+x = \delta \left (t \right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.885

572

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.070

573

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.682

574

\[ {}x^{\prime \prime }+6 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.689

575

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.661

576

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.349

577

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.311

578

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=2 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.431

579

\[ {}\left [\begin {array}{c} x^{\prime }=10 y \\ y^{\prime }=-10 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.423

580

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{2} \\ y^{\prime }=-8 x \end {array}\right ] \]

system_of_ODEs

0.376

581

\[ {}\left [\begin {array}{c} x^{\prime }=8 y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.388

582

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=6 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.530

583

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=10 x-7 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.540

584

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=13 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.557

585

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-9 x+6 y \end {array}\right ] \]

system_of_ODEs

0.318

586

\[ {}\left [\begin {array}{c} 10 x_{1}^{\prime }=-x_{1}+x_{3} \\ 10 x_{2}^{\prime }=x_{1}-x_{2} \\ 10 x_{3}^{\prime }=x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.937

587

\[ {}\left [\begin {array}{c} x^{\prime }=-x+3 y \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.306

588

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.320

589

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+2 y \\ y^{\prime }=-3 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.479

590

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=5 x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.507

591

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-4 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.422

592

\[ {}\left [\begin {array}{c} x^{\prime }=x+9 y \\ y^{\prime }=-2 x-5 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.555

593

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+y+2 t \\ y^{\prime }=-2 x+y \end {array}\right ] \]

system_of_ODEs

0.540

594

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x+2 y-{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.422

595

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y+2 \sin \left (2 t \right ) \\ y^{\prime }=x-2 y-\cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.706

596

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=4 x+5 y \\ 2 x^{\prime }-y^{\prime }=3 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.486

597

\[ {}\left [\begin {array}{c} -x^{\prime }+2 y^{\prime }=x+3 y+{\mathrm e}^{t} \\ 3 x^{\prime }-4 y^{\prime }=x-15 y+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.896

598

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+z \\ y^{\prime }=6 x-y \\ z^{\prime }=-x-2 y-z \end {array}\right ] \]

system_of_ODEs

0.579

599

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-4 x+4 y-2 z \\ z^{\prime }=-4 y+4 z \end {array}\right ] \]

system_of_ODEs

54.758

600

\[ {}\left [\begin {array}{c} x^{\prime }=y+z+{\mathrm e}^{-t} \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.598