2.2.7 Problems 601 to 700

Table 2.15: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

601

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=3 x \end {array}\right ] \]

system_of_ODEs

0.434

602

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.675

603

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }=5 x-y-t^{2} \end {array}\right ] \]

system_of_ODEs

1.562

604

\[ {}\left [\begin {array}{c} x^{\prime }=t x-{\mathrm e}^{t} y+\cos \left (t \right ) \\ y^{\prime }={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.060

605

\[ {}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.385

606

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y \\ y^{\prime }=x+y+2 z \\ z^{\prime }=5 y-7 z \end {array}\right ] \]

system_of_ODEs

7.314

607

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y+z+t \\ y^{\prime }=x-3 z+t^{2} \\ z^{\prime }=6 y-7 z+t^{3} \end {array}\right ] \]

system_of_ODEs

60.997

608

\[ {}\left [\begin {array}{c} x^{\prime }=t x-y+{\mathrm e}^{t} z \\ y^{\prime }=2 x+t^{2} y-z \\ z^{\prime }={\mathrm e}^{-t} x+3 t y+t^{3} z \end {array}\right ] \]

system_of_ODEs

0.017

609

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2} \\ x_{2}^{\prime }=2 x_{3} \\ x_{3}^{\prime }=3 x_{4} \\ x_{4}^{\prime }=4 x_{1} \end {array}\right ] \]

system_of_ODEs

1.991

610

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3}+1 \\ x_{2}^{\prime }=x_{3}+x_{4}+t \\ x_{3}^{\prime }=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }=x_{1}+x_{2}+t^{3} \end {array}\right ] \]

system_of_ODEs

1.878

611

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.368

612

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+4 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.450

613

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.384

614

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2} \\ x_{2}^{\prime }=-2 x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.408

615

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-3 x_{2} \\ x_{2}^{\prime }=6 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.440

616

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=-x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }=-x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.033

617

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.386

618

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }=6 x_{1}-x_{2} \\ x_{3}^{\prime }=-x_{1}-2 x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.459

619

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-8 x_{1}-11 x_{2}-2 x_{3} \\ x_{2}^{\prime }=6 x_{1}+9 x_{2}+2 x_{3} \\ x_{3}^{\prime }=-6 x_{1}-6 x_{2}+x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.435

620

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }=x_{2} \\ x_{3}^{\prime }=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }=-4 x_{2}-x_{4} \end {array}\right ] \]
i.c.

system_of_ODEs

0.380

621

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.368

622

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+3 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.951

623

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.425

624

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2} \\ x_{2}^{\prime }=6 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.378

625

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.369

626

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }=-6 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.588

627

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=6 x_{1}-5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.364

628

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.479

629

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.596

630

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=9 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.493

631

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.490

632

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.496

633

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.595

634

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.456

635

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.575

636

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }=100 x_{1}-60 x_{2} \end {array}\right ] \]

system_of_ODEs

0.382

637

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.386

638

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}+7 x_{3} \end {array}\right ] \]

system_of_ODEs

0.352

639

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

1.102

640

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=3 x_{1}+x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

0.362

641

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }=4 x_{1}-2 x_{2}-4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.386

642

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-5 x_{1}-4 x_{2}-2 x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.355

643

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=-5 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.395

644

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.570

645

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }=6 x_{1}+6 x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

0.603

646

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{3} \\ x_{2}^{\prime }=9 x_{1}-x_{2}+2 x_{3} \\ x_{3}^{\prime }=-9 x_{1}+4 x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.703

647

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }=4 x_{3}+4 x_{4} \end {array}\right ] \]

system_of_ODEs

0.501

648

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+9 x_{4} \\ x_{2}^{\prime }=4 x_{1}+2 x_{2}-10 x_{4} \\ x_{3}^{\prime }=-x_{3}+8 x_{4} \\ x_{4}^{\prime }=x_{4} \end {array}\right ] \]

system_of_ODEs

1.129

649

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1} \\ x_{2}^{\prime }=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }=5 x_{3} \\ x_{4}^{\prime }=-21 x_{3}-2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.549

650

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\ x_{3}^{\prime }=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\ x_{4}^{\prime }=7 x_{1}+x_{2}+x_{3}+4 x_{4} \end {array}\right ] \]
i.c.

system_of_ODEs

0.697

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

0.730

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

0.524

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

0.355

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

0.521

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

0.365

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

1.364

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

0.597

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

0.744

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

0.317

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

0.612

661

\[ {}y^{\prime } = -\sin \left (x \right )-y \]

[[_linear, ‘class A‘]]

1.522

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

1.369

663

\[ {}y^{\prime } = -\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

1.925

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

1.299

665

\[ {}y^{\prime } = 1-x +y \]

[[_linear, ‘class A‘]]

1.801

666

\[ {}y^{\prime } = 1+x -y \]

[[_linear, ‘class A‘]]

2.168

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

1.307

668

\[ {}y^{\prime } = -2+x^{2}-y \]

[[_linear, ‘class A‘]]

1.357

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

2.466

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

2.077

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

5.274

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

2.944

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

15.135

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

20.753

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

1.911

676

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

0.945

677

\[ {}2 x y+y^{\prime } = 0 \]

[_separable]

2.734

678

\[ {}2 x y^{2}+y^{\prime } = 0 \]

[_separable]

3.049

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

4.689

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

3.995

681

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

3.009

682

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

15.635

683

\[ {}y^{\prime } = 4 \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

14.182

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

1.682

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

4.330

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

3.414

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

2.483

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

1.876

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

3.175

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

2.078

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

3.282

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

3.514

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

2.245

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

2.812

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

2.639

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

12.642

697

\[ {}y^{\prime } = -y+4 x^{3} y \]
i.c.

[_separable]

1.511

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

1.489

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4.785

700

\[ {}y^{\prime } x -y = 2 x^{2} y \]
i.c.

[_separable]

2.704