2.2.7 Problems 601 to 700

Table 2.15: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

601

\[ {}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=3 x \end {array}\right ] \]

system_of_ODEs

0.851

602

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

1.070

603

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }=5 x-y-t^{2} \end {array}\right ] \]

system_of_ODEs

0.927

604

\[ {}\left [\begin {array}{c} x^{\prime }=x t -{\mathrm e}^{t} y+\cos \left (t \right ) \\ y^{\prime }={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.053

605

\[ {}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.377

606

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y \\ y^{\prime }=x+y+2 z \\ z^{\prime }=5 y-7 z \end {array}\right ] \]

system_of_ODEs

9.258

607

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y+z+t \\ y^{\prime }=x-3 z+t^{2} \\ z^{\prime }=6 y-7 z+t^{3} \end {array}\right ] \]

system_of_ODEs

103.527

608

\[ {}\left [\begin {array}{c} x^{\prime }=x t -y+{\mathrm e}^{t} z \\ y^{\prime }=2 x+t^{2} y-z \\ z^{\prime }={\mathrm e}^{-t} x+3 t y+t^{3} z \end {array}\right ] \]

system_of_ODEs

0.084

609

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2} \\ x_{2}^{\prime }=2 x_{3} \\ x_{3}^{\prime }=3 x_{4} \\ x_{4}^{\prime }=4 x_{1} \end {array}\right ] \]

system_of_ODEs

3.334

610

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3}+1 \\ x_{2}^{\prime }=x_{3}+x_{4}+t \\ x_{3}^{\prime }=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }=x_{1}+x_{2}+t^{3} \end {array}\right ] \]

system_of_ODEs

3.444

611

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.370

612

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+4 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.342

613

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.338

614

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2} \\ x_{2}^{\prime }=-2 x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

1.310

615

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-3 x_{2} \\ x_{2}^{\prime }=6 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.359

616

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=-x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }=-x_{2}+3 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.119

617

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

1.026

618

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }=6 x_{1}-x_{2} \\ x_{3}^{\prime }=-x_{1}-2 x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.169

619

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-8 x_{1}-11 x_{2}-2 x_{3} \\ x_{2}^{\prime }=6 x_{1}+9 x_{2}+2 x_{3} \\ x_{3}^{\prime }=-6 x_{1}-6 x_{2}+x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.520

620

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }=x_{2} \\ x_{3}^{\prime }=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }=-4 x_{2}-x_{4} \end {array}\right ] \]
i.c.

system_of_ODEs

1.180

621

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.306

622

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+3 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.934

623

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.337

624

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2} \\ x_{2}^{\prime }=6 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.966

625

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.276

626

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }=-6 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.990

627

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=6 x_{1}-5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.289

628

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

1.023

629

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.364

630

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=9 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.994

631

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.345

632

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

1.033

633

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.357

634

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.970

635

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.403

636

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }=100 x_{1}-60 x_{2} \end {array}\right ] \]

system_of_ODEs

0.971

637

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.413

638

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}+7 x_{3} \end {array}\right ] \]

system_of_ODEs

1.072

639

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

1.013

640

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=3 x_{1}+x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

0.413

641

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }=4 x_{1}-2 x_{2}-4 x_{3} \end {array}\right ] \]

system_of_ODEs

1.132

642

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-5 x_{1}-4 x_{2}-2 x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

1.108

643

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=-5 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

1.174

644

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.694

645

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }=6 x_{1}+6 x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

1.286

646

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{3} \\ x_{2}^{\prime }=9 x_{1}-x_{2}+2 x_{3} \\ x_{3}^{\prime }=-9 x_{1}+4 x_{2}-x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.377

647

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }=4 x_{3}+4 x_{4} \end {array}\right ] \]

system_of_ODEs

1.493

648

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+9 x_{4} \\ x_{2}^{\prime }=4 x_{1}+2 x_{2}-10 x_{4} \\ x_{3}^{\prime }=-x_{3}+8 x_{4} \\ x_{4}^{\prime }=x_{4} \end {array}\right ] \]

system_of_ODEs

1.382

649

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1} \\ x_{2}^{\prime }=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }=5 x_{3} \\ x_{4}^{\prime }=-21 x_{3}-2 x_{4} \end {array}\right ] \]

system_of_ODEs

1.450

650

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\ x_{3}^{\prime }=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\ x_{4}^{\prime }=7 x_{1}+x_{2}+x_{3}+4 x_{4} \end {array}\right ] \]
i.c.

system_of_ODEs

2.191

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

0.290

652

\[ {}y^{\prime } = \left (x -2\right )^{2} \]
i.c.

[_quadrature]

0.932

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

0.325

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

0.900

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

0.324

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

0.584

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

1.008

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

0.328

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

0.987

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

0.314

661

\[ {}y^{\prime } = -\sin \left (x \right )-y \]

[[_linear, ‘class A‘]]

2.381

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

1.288

663

\[ {}y^{\prime } = -\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

2.319

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

1.228

665

\[ {}y^{\prime } = 1-x +y \]

[[_linear, ‘class A‘]]

1.467

666

\[ {}y^{\prime } = 1+x -y \]

[[_linear, ‘class A‘]]

1.973

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

1.248

668

\[ {}y^{\prime } = -2+x^{2}-y \]

[[_linear, ‘class A‘]]

1.262

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

3.903

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

2.210

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

0.536

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

0.556

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

9.345

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

6.146

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

1.493

676

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.970

677

\[ {}2 y x +y^{\prime } = 0 \]

[_separable]

2.140

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

2.757

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

2.433

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

2.555

681

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

2.173

682

\[ {}y^{\prime } = 3 \sqrt {y x} \]

[[_homogeneous, ‘class G‘]]

11.918

683

\[ {}y^{\prime } = 4 \left (y x \right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

5.796

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

2.618

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

2.571

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2} \]

[_separable]

3.116

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4.335

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

3.053

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

3.049

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

3.071

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

3.307

692

\[ {}y^{\prime } = 1+x +y+y x \]

[_separable]

1.576

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

3.105

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

2.575

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

3.996

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

3.204

697

\[ {}y^{\prime } = -y+4 x^{3} y \]
i.c.

[_separable]

2.785

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

1.230

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

3.204

700

\[ {}y^{\prime } x -y = 2 x^{2} y \]
i.c.

[_separable]

2.708