2.2.8 Problems 701 to 800

Table 2.17: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

3.825

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

5.162

703

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

2.800

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

0.447

705

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

2.412

706

\[ {}3 y+y^{\prime } = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

2.769

707

\[ {}-2 y x +y^{\prime } = {\mathrm e}^{x^{2}} \]

[_linear]

2.536

708

\[ {}2 y+y^{\prime } x = 3 x \]
i.c.

[_linear]

4.155

709

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]
i.c.

[_linear]

8.132

710

\[ {}2 y^{\prime } x +y = 10 \sqrt {x} \]

[_linear]

1.837

711

\[ {}y+3 y^{\prime } x = 12 x \]

[_linear]

3.830

712

\[ {}y^{\prime } x -y = x \]
i.c.

[_linear]

3.819

713

\[ {}-3 y+2 y^{\prime } x = 9 x^{3} \]

[_linear]

1.871

714

\[ {}y^{\prime } x +y = 3 y x \]
i.c.

[_separable]

2.777

715

\[ {}3 y+y^{\prime } x = 2 x^{5} \]
i.c.

[_linear]

3.827

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

1.697

717

\[ {}-3 y+y^{\prime } x = x^{3} \]
i.c.

[_linear]

2.486

718

\[ {}2 y x +y^{\prime } = x \]
i.c.

[_separable]

2.747

719

\[ {}y^{\prime } = \cos \left (x \right ) \left (1-y\right ) \]
i.c.

[_separable]

3.072

720

\[ {}y+\left (x +1\right ) y^{\prime } = \cos \left (x \right ) \]
i.c.

[_linear]

2.257

721

\[ {}y^{\prime } x = x^{3} \cos \left (x \right )+2 y \]

[_linear]

1.463

722

\[ {}\cot \left (x \right ) y+y^{\prime } = \cos \left (x \right ) \]

[_linear]

1.605

723

\[ {}y^{\prime } = 1+x +y+y x \]
i.c.

[_separable]

1.921

724

\[ {}y^{\prime } x = x^{4} \cos \left (x \right )+3 y \]
i.c.

[_linear]

2.998

725

\[ {}y^{\prime } = 3 \,{\mathrm e}^{x^{2}} x^{2}+2 y x \]
i.c.

[_linear]

2.956

726

\[ {}\left (2 x -3\right ) y+y^{\prime } x = 4 x^{4} \]

[_linear]

2.704

727

\[ {}3 y x +\left (x^{2}+4\right ) y^{\prime } = x \]
i.c.

[_separable]

1.252

728

\[ {}3 x^{3} y+\left (x^{2}+1\right ) y^{\prime } = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

2.561

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.122

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

11.712

731

\[ {}y^{\prime } x = y+2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.044

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.461

733

\[ {}x \left (x +y\right ) y^{\prime } = y \left (x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.360

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.020

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14.178

736

\[ {}x^{2} y^{\prime } = {\mathrm e}^{\frac {y}{x}} x^{2}+y x \]

[[_homogeneous, ‘class A‘], _dAlembert]

20.486

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.617

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.016

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.574

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

40.931

741

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.014

742

\[ {}x +y y^{\prime } = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.293

743

\[ {}y \left (3 x +y\right )+x \left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.523

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.535

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.188

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.204

747

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.921

748

\[ {}2 x y^{3}+y^{2} y^{\prime } = 6 x \]

[_separable]

3.206

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

4.507

750

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5.086

751

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

92.378

752

\[ {}y^{3} {\mathrm e}^{-2 x}+2 y^{\prime } x = 2 y x \]

[_Bernoulli]

3.992

753

\[ {}y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

13.171

754

\[ {}y^{3}+3 y^{2} y^{\prime } = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.770

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.873

756

\[ {}{\mathrm e}^{y} x y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.758

757

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

3.408

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = -1+x \,{\mathrm e}^{-y} \]

[[_1st_order, _with_linear_symmetries]]

1.768

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.878

760

\[ {}4 x -y+\left (-x +6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.169

761

\[ {}3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

13.801

762

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.804

763

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

2.763

764

\[ {}1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

2.305

765

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

6.551

766

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

1.581

767

\[ {}3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+4 x y^{3}+y^{4}\right ) y^{\prime } = 0 \]

[_exact, _rational]

2.715

768

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

26.570

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}+\frac {2 y}{x^{3}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18.954

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

3.746

771

\[ {}x^{3}+3 y-y^{\prime } x = 0 \]

[_linear]

0.844

772

\[ {}3 y^{2}+x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

1.405

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.204

774

\[ {}{\mathrm e}^{x}+2 x y^{3}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.207

775

\[ {}3 y+x^{4} y^{\prime } = 2 y x \]

[_separable]

2.583

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

1.477

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

0.895

778

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.133

779

\[ {}2 y+y^{\prime } x = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.468

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

2.961

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.952

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.522

783

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \]

[‘y=_G(x,y’)‘]

0.591

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

79.856

785

\[ {}3 y+y^{\prime } = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

2.866

786

\[ {}y^{\prime } = x^{2}-2 y x +y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.523

787

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

4.718

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

95.566

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

1.529

790

\[ {}3 y+y^{\prime } x = \frac {3}{x^{{3}/{2}}} \]

[_linear]

3.576

791

\[ {}\left (x -1\right ) y+\left (x^{2}-1\right ) y^{\prime } = 1 \]

[_linear]

1.104

792

\[ {}y^{\prime } x = 12 x^{4} y^{{2}/{3}}+6 y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10.925

793

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

72.859

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

3.546

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3+3 x \]

[_linear]

1.519

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

0.209

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.113

798

\[ {}y^{\prime } x +y = 2 \,{\mathrm e}^{2 x} \]

[_linear]

0.996

799

\[ {}y+\left (2 x +1\right ) y^{\prime } = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

6.008

800

\[ {}y^{\prime } = 3 x^{2} \left (7+y\right ) \]

[_separable]

0.981