2.2.8 Problems 701 to 800

Table 2.17: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

1.794

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

3.030

703

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

2.099

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

1.215

705

\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

1.291

706

\[ {}3 y+y^{\prime } = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

1.528

707

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

1.371

708

\[ {}2 y+x y^{\prime } = 3 x \]
i.c.

[_linear]

2.624

709

\[ {}y+2 x y^{\prime } = 10 \sqrt {x} \]
i.c.

[_linear]

4.753

710

\[ {}y+2 x y^{\prime } = 10 \sqrt {x} \]

[_linear]

3.926

711

\[ {}y+3 x y^{\prime } = 12 x \]

[_linear]

1.973

712

\[ {}x y^{\prime }-y = x \]
i.c.

[_linear]

1.543

713

\[ {}-3 y+2 x y^{\prime } = 9 x^{3} \]

[_linear]

1.357

714

\[ {}y+x y^{\prime } = 3 x y \]
i.c.

[_separable]

1.634

715

\[ {}3 y+x y^{\prime } = 2 x^{5} \]
i.c.

[_linear]

1.760

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

1.354

717

\[ {}-3 y+x y^{\prime } = x^{3} \]
i.c.

[_linear]

1.392

718

\[ {}2 x y+y^{\prime } = x \]
i.c.

[_separable]

1.649

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

1.862

720

\[ {}y+\left (x +1\right ) y^{\prime } = \cos \left (x \right ) \]
i.c.

[_linear]

1.769

721

\[ {}x y^{\prime } = x^{3} \cos \left (x \right )+2 y \]

[_linear]

1.806

722

\[ {}\cot \left (x \right ) y+y^{\prime } = \cos \left (x \right ) \]

[_linear]

1.827

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

1.628

724

\[ {}x y^{\prime } = x^{4} \cos \left (x \right )+3 y \]
i.c.

[_linear]

2.741

725

\[ {}y^{\prime } = 3 \,{\mathrm e}^{x^{2}} x^{2}+2 x y \]
i.c.

[_linear]

2.835

726

\[ {}\left (2 x -3\right ) y+x y^{\prime } = 4 x^{4} \]

[_linear]

2.324

727

\[ {}3 x y+\left (x^{2}+4\right ) y^{\prime } = x \]
i.c.

[_separable]

2.076

728

\[ {}3 x^{3} y+\left (x^{2}+1\right ) y^{\prime } = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

2.513

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.938

730

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.286

731

\[ {}x y^{\prime } = y+2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.793

732

\[ {}\left (x -y\right ) y^{\prime } = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.859

733

\[ {}x \left (x +y\right ) y^{\prime } = y \left (x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.215

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.548

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.069

736

\[ {}x^{2} y^{\prime } = {\mathrm e}^{\frac {y}{x}} x^{2}+x y \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.598

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.950

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.905

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.537

740

\[ {}x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

26.792

741

\[ {}x y^{\prime } = y+\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.972

742

\[ {}x +y y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.843

743

\[ {}y \left (3 x +y\right )+x \left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.857

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.542

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.666

746

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.408

747

\[ {}2 x y+x^{2} y^{\prime } = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.813

748

\[ {}2 x y^{3}+y^{2} y^{\prime } = 6 x \]

[_separable]

1.889

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

4.030

750

\[ {}2 x y+x^{2} y^{\prime } = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.931

751

\[ {}6 y+x y^{\prime } = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

54.468

752

\[ {}y^{3} {\mathrm e}^{-2 x}+2 x y^{\prime } = 2 x y \]

[_Bernoulli]

2.507

753

\[ {}\sqrt {x^{4}+1}\, y^{2} \left (y+x y^{\prime }\right ) = x \]

[_Bernoulli]

6.079

754

\[ {}y^{3}+3 y^{2} y^{\prime } = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.859

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.023

756

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 \,{\mathrm e}^{2 x} x^{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.533

757

\[ {}2 x \cos \left (y\right ) \sin \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

3.122

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = -1+x \,{\mathrm e}^{-y} \]

[[_1st_order, _with_linear_symmetries]]

1.691

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.886

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.398

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10.691

762

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.888

763

\[ {}x^{3}+\frac {y}{x}+\left (\ln \left (x \right )+y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1.509

764

\[ {}1+{\mathrm e}^{x y} y+\left (x \,{\mathrm e}^{x y}+2 y\right ) y^{\prime } = 0 \]

[_exact]

1.973

765

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

2.755

766

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

1.703

767

\[ {}3 y^{3} x^{2}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.492

768

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

16.472

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

10.704

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.070

771

\[ {}x^{3}+3 y-x y^{\prime } = 0 \]

[_linear]

1.030

772

\[ {}3 y^{2}+x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

1.519

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.846

774

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 x^{2} y^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.039

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

1.553

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

1.508

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

1.032

778

\[ {}2 x y+x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.454

779

\[ {}2 y+x y^{\prime } = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.400

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

2.134

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.869

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 x^{2} y^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.551

783

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \]

[‘y=_G(x,y’)‘]

1.096

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

81.421

785

\[ {}3 y+y^{\prime } = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

1.620

786

\[ {}y^{\prime } = x^{2}-2 x y+y^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.824

787

\[ {}{\mathrm e}^{x}+{\mathrm e}^{x y} y+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

2.280

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

124.797

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

1.448

790

\[ {}3 y+x y^{\prime } = \frac {3}{x^{{3}/{2}}} \]

[_linear]

1.674

791

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

1.246

792

\[ {}x y^{\prime } = 12 x^{4} y^{{2}/{3}}+6 y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.788

793

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

36.792

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

1.668

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3+3 x \]

[_linear]

1.509

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

0.275

797

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.323

798

\[ {}y+x y^{\prime } = 2 \,{\mathrm e}^{2 x} \]

[_linear]

1.104

799

\[ {}y+\left (2 x +1\right ) y^{\prime } = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

3.659

800

\[ {}y^{\prime } = 3 x^{2} \left (y+7\right ) \]

[_separable]

1.244