2.2.97 Problems 9601 to 9700

Table 2.195: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9601

\[ {}f \left (x^{2}+a y^{2}\right ) \left (a y y^{\prime }+x \right )-y-y^{\prime } x = 0 \]

[_exact]

5.489

9602

\[ {}f \left (x^{c} y\right ) \left (b x y^{\prime }-a \right )-x^{a} y^{b} \left (y^{\prime } x +c y\right ) = 0 \]

[NONE]

2.626

9603

\[ {}{y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.335

9604

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

0.650

9605

\[ {}{y^{\prime }}^{2}+y^{2}-f \left (x \right )^{2} = 0 \]

[‘y=_G(x,y’)‘]

1.673

9606

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

1.970

9607

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

1.954

9608

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

[_quadrature]

2.000

9609

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

0.340

9610

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

0.193

9611

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

0.766

9612

\[ {}{y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.381

9613

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.440

9614

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.344

9615

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.336

9616

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.336

9617

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

0.405

9618

\[ {}{y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

3.628

9619

\[ {}{y^{\prime }}^{2}+\left (a x +b \right ) y^{\prime }-a y+c = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.556

9620

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class G‘]]

2.619

9621

\[ {}{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.591

9622

\[ {}{y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.100

9623

\[ {}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

[_dAlembert]

44.809

9624

\[ {}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0 \]

[_quadrature]

1.120

9625

\[ {}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0 \]

[_dAlembert]

1.127

9626

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

0.597

9627

\[ {}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.813

9628

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

1.099

9629

\[ {}{y^{\prime }}^{2}+2 f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

13.313

9630

\[ {}{y^{\prime }}^{2}+y \left (-x +y\right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

1.345

9631

\[ {}{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.769

9632

\[ {}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5.036

9633

\[ {}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.439

9634

\[ {}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x = 0 \]

[[_homogeneous, ‘class G‘]]

2.850

9635

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.344

9636

\[ {}3 {y^{\prime }}^{2}+4 y^{\prime } x -y+x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.594

9637

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

0.592

9638

\[ {}a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0 \]

[[_homogeneous, ‘class G‘]]

3.740

9639

\[ {}a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

unknown

641.518

9640

\[ {}a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

unknown

367.569

9641

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.394

9642

\[ {}x {y^{\prime }}^{2}-2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.828

9643

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

0.877

9644

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

0.993

9645

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.786

9646

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.397

9647

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

3.337

9648

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

4.355

9649

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

16.448

9650

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.728

9651

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.352

9652

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.677

9653

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.642

9654

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.478

9655

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.263

9656

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.507

9657

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.649

9658

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.019

9659

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.549

9660

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (2+y\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.536

9661

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.584

9662

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.650

9663

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.712

9664

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_rational, _dAlembert]

2.115

9665

\[ {}x^{2} {y^{\prime }}^{2}-y^{4}+y^{2} = 0 \]

[_separable]

2.166

9666

\[ {}\left (y^{\prime } x +a \right )^{2}-2 a y+x^{2} = 0 \]

[_rational]

2.312

9667

\[ {}\left (y^{\prime } x +y+2 x \right )^{2}-4 y x -4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.029

9668

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

0.408

9669

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (1+y\right )-x = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.644

9670

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.251

9671

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 y x +a \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.645

9672

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

2.742

9673

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0 \]

[_separable]

0.369

9674

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

2.493

9675

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (2+y\right ) y^{\prime }+4 y \left (2+y\right ) = 0 \]

[_separable]

0.708

9676

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

1.991

9677

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

152.320

9678

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

0.623

9679

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.545

9680

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.270

9681

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.974

9682

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

1.995

9683

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.274

9684

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.952

9685

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

[_rational]

19.921

9686

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

74.396

9687

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.208

9688

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘]]

6.017

9689

\[ {}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.465

9690

\[ {}x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.918

9691

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.496

9692

\[ {}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.622

9693

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

[‘y=_G(x,y’)‘]

6.984

9694

\[ {}\operatorname {d0} \left (x \right ) {y^{\prime }}^{2}+2 \operatorname {b0} \left (x \right ) y y^{\prime }+\operatorname {c0} \left (x \right ) y^{2}+2 \operatorname {d0} \left (x \right ) y^{\prime }+2 \operatorname {e0} \left (x \right ) y+\operatorname {f0} \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

119.799

9695

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

2.063

9696

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.268

9697

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.819

9698

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.010

9699

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.776

9700

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.427