2.2.98 Problems 9701 to 9800

Table 2.197: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9701

\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \]

[_linear]

1.449

9702

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

0.941

9703

\[ {}y^{\prime }+y^{2}-a x -b = 0 \]

[_Riccati]

1.183

9704

\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \]

[[_Riccati, _special]]

1.463

9705

\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1.766

9706

\[ {}y^{\prime }+y^{2}+\left (x y-1\right ) f \left (x \right ) = 0 \]

[_Riccati]

1.819

9707

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

1.394

9708

\[ {}y^{\prime }-y^{2}-x y-x +1 = 0 \]

[_Riccati]

1.347

9709

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

1.496

9710

\[ {}y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x = 0 \]

[_Riccati]

1.745

9711

\[ {}y^{\prime }-y^{2}+y \sin \left (x \right )-\cos \left (x \right ) = 0 \]

[_Riccati]

2.804

9712

\[ {}y^{\prime }-y^{2}-y \sin \left (2 x \right )-\cos \left (2 x \right ) = 0 \]

[_Riccati]

4.901

9713

\[ {}y^{\prime }+y^{2} a -b = 0 \]

[_quadrature]

0.757

9714

\[ {}y^{\prime }+y^{2} a -b \,x^{\nu } = 0 \]

[[_Riccati, _special]]

1.610

9715

\[ {}y^{\prime }+y^{2} a -b \,x^{2 \nu }-c \,x^{\nu -1} = 0 \]

[_Riccati]

2.902

9716

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

2.010

9717

\[ {}y^{\prime }+a y \left (y-x \right )-1 = 0 \]

[_Riccati]

1.325

9718

\[ {}y^{\prime }+x y^{2}-x^{3} y-2 x = 0 \]

[_Riccati]

1.974

9719

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

1.848

9720

\[ {}y^{\prime }+x^{-a -1} y^{2}-x^{a} = 0 \]

[_Riccati]

2.120

9721

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

1.907

9722

\[ {}y^{\prime }+y^{2} \sin \left (x \right )-\frac {2 \sin \left (x \right )}{\cos \left (x \right )^{2}} = 0 \]

[_Riccati]

4.479

9723

\[ {}y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )} = 0 \]

[_Riccati]

2.986

9724

\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \]

[_Bernoulli]

1.559

9725

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

3.114

9726

\[ {}y^{\prime }+y^{3}+a x y^{2} = 0 \]

[_Abel]

0.875

9727

\[ {}y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2} = 0 \]

[_Abel]

1.362

9728

\[ {}y^{\prime }-a y^{3}-\frac {b}{x^{{3}/{2}}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Abel]

8.058

9729

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

1.465

9730

\[ {}y^{\prime }+3 a y^{3}+6 a x y^{2} = 0 \]

[_Abel]

0.902

9731

\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

2.118

9732

\[ {}y^{\prime }-x \left (x +2\right ) y^{3}-\left (x +3\right ) y^{2} = 0 \]

[_Abel]

1.380

9733

\[ {}y^{\prime }+\left (4 a^{2} x +3 a \,x^{2}+b \right ) y^{3}+3 x y^{2} = 0 \]

[_Abel]

1.839

9734

\[ {}y^{\prime }+2 a \,x^{3} y^{3}+2 x y = 0 \]

[_Bernoulli]

1.195

9735

\[ {}y^{\prime }+2 \left (a^{2} x^{3}-b^{2} x \right ) y^{3}+3 b y^{2} = 0 \]

[_Abel]

1.664

9736

\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0 \]

[_Abel]

3.961

9737

\[ {}y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \]

[_Abel]

2.000

9738

\[ {}y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \]

[_Abel]

2.096

9739

\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2 a +2 = 0 \]

[_Abel]

1.277

9740

\[ {}y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \]

[_Abel]

4.319

9741

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

[_Abel]

32.975

9742

\[ {}y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}} = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

1.929

9743

\[ {}y^{\prime }-f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n} \left (a g \left (x \right )+b \right )^{-n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \]

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

476.536

9744

\[ {}y^{\prime }-a^{n} f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \]

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.521

9745

\[ {}y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \]

[_Chini]

2.494

9746

\[ {}y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \]

[NONE]

1.719

9747

\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \]

[_quadrature]

1.451

9748

\[ {}y^{\prime }-a \sqrt {y}-b x = 0 \]

[[_homogeneous, ‘class G‘], _Chini]

3.647

9749

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

3.388

9750

\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

14.828

9751

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \]

[_separable]

1.878

9752

\[ {}y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x} = 0 \]

[NONE]

48.809

9753

\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {y+1}|} \left (x +1\right )^{{3}/{2}}} = 0 \]

[_separable]

49.794

9754

\[ {}y^{\prime }-\sqrt {\frac {y^{2} a +b y+c}{a \,x^{2}+b x +c}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

171.092

9755

\[ {}y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.711

9756

\[ {}y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0 \]

[_separable]

44.720

9757

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

3.268

9758

\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.781

9759

\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.588

9760

\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.685

9761

\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.724

9762

\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \]

[_separable]

1.910

9763

\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{{2}/{3}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.219

9764

\[ {}y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

[‘y=_G(x,y’)‘]

4.974

9765

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

1.472

9766

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

1.090

9767

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

48.589

9768

\[ {}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.043

9769

\[ {}y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

5.708

9770

\[ {}y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

5.142

9771

\[ {}y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

3.884

9772

\[ {}y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

6.480

9773

\[ {}y^{\prime }-\tan \left (x y\right ) = 0 \]

[‘y=_G(x,y’)‘]

1.308

9774

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.055

9775

\[ {}y^{\prime }-x^{a -1} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.253

9776

\[ {}y^{\prime }-\frac {y-x f \left (x^{2}+y^{2} a \right )}{x +a y f \left (x^{2}+y^{2} a \right )} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.508

9777

\[ {}y^{\prime }-\frac {y a f \left (x^{c} y\right )+c \,x^{a} y^{b}}{x b f \left (x^{c} y\right )-x^{a} y^{b}} = 0 \]

[NONE]

4.913

9778

\[ {}2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x} = 0 \]

[_Riccati]

2.154

9779

\[ {}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

0.528

9780

\[ {}x y^{\prime }+y-x \sin \left (x \right ) = 0 \]

[_linear]

1.192

9781

\[ {}x y^{\prime }-y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

1.083

9782

\[ {}x y^{\prime }-y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

1.228

9783

\[ {}x y^{\prime }-y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

2.438

9784

\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \]

[_linear]

1.047

9785

\[ {}x y^{\prime }+y^{2}+x^{2} = 0 \]

[_rational, _Riccati]

1.046

9786

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

1.471

9787

\[ {}x y^{\prime }+y^{2} a -y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.371

9788

\[ {}x y^{\prime }+y^{2} a -b y+c \,x^{2 b} = 0 \]

[_rational, _Riccati]

1.891

9789

\[ {}x y^{\prime }+y^{2} a -b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

2.121

9790

\[ {}x y^{\prime }+x y^{2}+a = 0 \]

[_rational, [_Riccati, _special]]

0.993

9791

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.764

9792

\[ {}x y^{\prime }+x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.267

9793

\[ {}x y^{\prime }+x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.090

9794

\[ {}x y^{\prime }+a x y^{2}+2 y+b x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.377

9795

\[ {}x y^{\prime }+a x y^{2}+b y+c x +d = 0 \]

[_rational, _Riccati]

6.453

9796

\[ {}x y^{\prime }+x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \]

[_rational, _Riccati]

2.232

9797

\[ {}x y^{\prime }+a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

3.063

9798

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

1.914

9799

\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

2.022

9800

\[ {}x y^{\prime }+f \left (x \right ) \left (y^{2}-x^{2}\right )-y = 0 \]

[[_homogeneous, ‘class D‘], _Riccati]

2.207