2.2.98 Problems 9701 to 9800

Table 2.197: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9701

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.014

9702

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.642

9703

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.957

9704

\[ {}y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x = 0 \]

[_quadrature]

2.775

9705

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.911

9706

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.901

9707

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.835

9708

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.714

9709

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.977

9710

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.807

9711

\[ {}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

0.906

9712

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

330.359

9713

\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

[_rational]

2.089

9714

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

3.826

9715

\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-y x = 0 \]

[_rational]

15.335

9716

\[ {}\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 y x -y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.404

9717

\[ {}\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

72.283

9718

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

122.553

9719

\[ {}y^{2} {y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

1.470

9720

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.229

9721

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+y^{2}-4 a x +4 a^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

145.112

9722

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a y^{2}+b x +c = 0 \]

[_rational]

4.443

9723

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2}+a = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.810

9724

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (1-a \right ) y^{2}+a \,x^{2}+\left (a -1\right ) b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.365

9725

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

0.762

9726

\[ {}\left (y^{2}-2 a x +a^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

[‘y=_G(x,y’)‘]

184.098

9727

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.686

9728

\[ {}\left (y^{2}+\left (1-a \right ) x^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (1-a \right ) y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

69.905

9729

\[ {}\left (-x +y\right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

21.342

9730

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.471

9731

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

0.532

9732

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.721

9733

\[ {}\left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }+a y^{2}-b \,x^{2}-a b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.009

9734

\[ {}\left (a y^{2}+b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2} = 0 \]

[‘y=_G(x,y’)‘]

168.301

9735

\[ {}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

30.691

9736

\[ {}\left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \]

[_rational]

340.324

9737

\[ {}x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y = 0 \]

[_rational]

9.280

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

73.755

9739

\[ {}x^{2} \left (-1+x y^{2}\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (-x +y\right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \]

[‘y=_G(x,y’)‘]

19.606

9740

\[ {}\left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right ) = 0 \]

[‘y=_G(x,y’)‘]

24.634

9741

\[ {}\left (y^{4}+x^{2} y^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2} = 0 \]

[‘y=_G(x,y’)‘]

8.731

9742

\[ {}9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.792

9743

\[ {}x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0 \]

[‘y=_G(x,y’)‘]

21.933

9744

\[ {}\left (a^{2} \sqrt {x^{2}+y^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+a^{2} \sqrt {x^{2}+y^{2}}-y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

138.563

9745

\[ {}\left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

26.055

9746

\[ {}{y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0 \]

[‘y=_G(x,y’)‘]

171.967

9747

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

7.114

9748

\[ {}f \left (x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

5.939

9749

\[ {}\left (x^{2}+y^{2}\right ) f \left (\frac {x}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

4.486

9750

\[ {}\left (x^{2}+y^{2}\right ) f \left (\frac {y}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

4.531

9751

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

0.910

9752

\[ {}{y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.854

9753

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

0.709

9754

\[ {}{y^{\prime }}^{3}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.438

9755

\[ {}{y^{\prime }}^{3}-\left (5+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.531

9756

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

0.601

9757

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

1.847

9758

\[ {}{y^{\prime }}^{2}-a x y y^{\prime }+2 a y^{2} = 0 \]

[_separable]

0.639

9759

\[ {}{y^{\prime }}^{3}-\left (y^{2}+y x +x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

1.475

9760

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

12.737

9761

\[ {}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.921

9762

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

2.945

9763

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

2.132

9764

\[ {}{y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[‘y=_G(x,y’)‘]

24.872

9765

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

11.625

9766

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.702

9767

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+3 y-x = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.816

9768

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.858

9769

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

0.501

9770

\[ {}x^{3} {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

15.005

9771

\[ {}2 \left (y^{\prime } x +y\right )^{3}-y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

13.855

9772

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (\sin \left (x \right ) y-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) y = 0 \]

[_quadrature]

0.816

9773

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x = 0 \]

[_quadrature]

2.735

9774

\[ {}y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

205.171

9775

\[ {}16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries]]

202.824

9776

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

[‘y=_G(x,y’)‘]

139.473

9777

\[ {}x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \]

[[_homogeneous, ‘class G‘]]

268.174

9778

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

0.951

9779

\[ {}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \]

[_dAlembert]

35.149

9780

\[ {}{y^{\prime }}^{4}-4 y \left (y^{\prime } x -2 y\right )^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

0.642

9781

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

1.422

9782

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

2.127

9783

\[ {}{y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}} = 0 \]

[[_homogeneous, ‘class G‘]]

2.427

9784

\[ {}{y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0 \]

[_separable]

10.905

9785

\[ {}{y^{\prime }}^{n}-f \left (x \right ) g \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.715

9786

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

1.047

9787

\[ {}x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y = 0 \]

[‘y=_G(x,y’)‘]

1.608

9788

\[ {}\sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.458

9789

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0 \]

[_dAlembert]

47.605

9790

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

35.399

9791

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

46.439

9792

\[ {}y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.636

9793

\[ {}a y \sqrt {1+{y^{\prime }}^{2}}-2 x y y^{\prime }+y^{2}-x^{2} = 0 \]

[‘y=_G(x,y’)‘]

22.421

9794

\[ {}f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.306

9795

\[ {}a \left ({y^{\prime }}^{3}+1\right )^{{1}/{3}}+b x y^{\prime }-y = 0 \]

[_dAlembert]

335.919

9796

\[ {}\ln \left (y^{\prime }\right )+y^{\prime } x +a y+b = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.309

9797

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.600

9798

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x = 0 \]

[_separable]

3.317

9799

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

0.461

9800

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

0.398