| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.744 |
|
| \begin{align*}
2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
3.225 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
3.452 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| \begin{align*}
y y^{\prime }&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.303 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+x}{y-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.328 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.048 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2}-4 x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
6.257 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.925 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.471 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.313 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x +x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
16.293 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.822 |
|
| \begin{align*}
y^{\prime }&=\frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.822 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y+2}{x +y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.610 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +3 y+1}{x -2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
28.669 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+1}{2 x +2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.199 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x +y-1\right )^{2}}{2 \left (2+x \right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.174 |
|
| \begin{align*}
2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.215 |
|
| \begin{align*}
x^{2}+y x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.899 |
|
| \begin{align*}
x^{2} y^{3}-x^{3} y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.313 |
|
| \begin{align*}
3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
2 y^{3}+2+3 y^{\prime } y^{2} x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.350 |
|
| \begin{align*}
{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.745 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.990 |
|
| \begin{align*}
y y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.421 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.170 |
|
| \begin{align*}
y^{\prime \prime }&=y y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.517 |
|
| \begin{align*}
-2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.521 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
29.336 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {1}{2 {y^{\prime }}^{2}} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
16.075 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= \beta \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
41.281 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
39.072 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{1} \\
y_{2}^{\prime }&=y_{1}+y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{2} \\
y_{2}^{\prime }&=6 y_{1}+y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2} \\
y_{2}^{\prime }&=y_{1}+y_{2}+{\mathrm e}^{3 x} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.607 |
|
| \begin{align*}
y_{1}^{\prime }&=3 y_{1}+x y_{3} \\
y_{2}^{\prime }&=y_{2}+x^{3} y_{3} \\
y_{3}^{\prime }&=2 x y_{1}-y_{2}+{\mathrm e}^{x} y_{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.048 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.713 |
|
| \begin{align*}
y y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.597 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.246 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.585 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| \begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {1-y^{2} x^{2}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
5.289 |
|
| \begin{align*}
y^{\prime } x&=y+x^{2}+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| \begin{align*}
y^{\prime }&=\frac {y x}{x^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.846 |
|
| \begin{align*}
2 y y^{\prime } x&=x^{2}+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.183 |
|
| \begin{align*}
y^{\prime } x +y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.835 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
17.905 |
|
| \begin{align*}
\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime }&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.137 |
|
| \begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.310 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
\left (x^{2}-3 x +2\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.554 |
|
| \begin{align*}
x \left (x^{2}-4\right ) y^{\prime }&=1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.624 |
|
| \begin{align*}
\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime }&=2 x^{2}+x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.844 |
|
| \begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.537 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.893 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y^{2}}{1-x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.518 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.056 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.879 |
|
| \begin{align*}
y^{\prime }&=4 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.942 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.663 |
|
| \begin{align*}
y \ln \left (y\right )-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.168 |
|
| \begin{align*}
y^{\prime } x&=\left (-4 x^{2}+1\right ) \tan \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.966 |
|
| \begin{align*}
y^{\prime } \sin \left (y\right )&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.388 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.766 |
|
| \begin{align*}
y y^{\prime } x&=-1+y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.553 |
|
| \begin{align*}
x y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.176 |
|
| \begin{align*}
y y^{\prime }&=x +1 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.000 |
|
| \begin{align*}
x^{2} y^{\prime }&=y \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.695 |
|
| \begin{align*}
\frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.482 |
|
| \begin{align*}
y^{2} y^{\prime }&=2+x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.422 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.647 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime }&=-x^{2}+1 \\
y \left (-1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.193 |
|
| \begin{align*}
\frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
7.599 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=x \left (x +1\right ) \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
9.056 |
|
| \begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.064 |
|