2.2.99 Problems 9801 to 9900

Table 2.199: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9801

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

0.920

9802

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1 = 0 \]

[_Clairaut]

7.251

9803

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

[_quadrature]

0.882

9804

\[ {}a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y = 0 \]

[‘y=_G(x,y’)‘]

0.589

9805

\[ {}\left (-y+y^{\prime } x \right )^{n} f \left (y^{\prime }\right )+y g \left (y^{\prime }\right )+x h \left (y^{\prime }\right ) = 0 \]

[‘x=_G(y,y’)‘]

2.561

9806

\[ {}f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y = 0 \]

[‘y=_G(x,y’)‘]

0.393

9807

\[ {}f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.848

9808

\[ {}y^{\prime } f \left (x y y^{\prime }-y^{2}\right )-x^{2} y^{\prime }+y x = 0 \]

[NONE]

0.526

9809

\[ {}\phi \left (f \left (x , y, y^{\prime }\right ), g \left (x , y, y^{\prime }\right )\right ) = 0 \]

[NONE]

0.908

9810

\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.874

9811

\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

0.650

9812

\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

0.960

9813

\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries]]

0.805

9814

\[ {}y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.082

9815

\[ {}y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.128

9816

\[ {}y^{\prime } = -\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.211

9817

\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

[[_1st_order, _with_linear_symmetries]]

0.964

9818

\[ {}y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.760

9819

\[ {}y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.748

9820

\[ {}y^{\prime } = \frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.355

9821

\[ {}y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.034

9822

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.469

9823

\[ {}y^{\prime } = \frac {x}{-y+F \left (x^{2}+y^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.150

9824

\[ {}y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.128

9825

\[ {}y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.438

9826

\[ {}y^{\prime } = \frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.350

9827

\[ {}y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.092

9828

\[ {}y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.052

9829

\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.533

9830

\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.455

9831

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1} \]

[[_homogeneous, ‘class D‘]]

1.628

9832

\[ {}y^{\prime } = \frac {-x +F \left (x^{2}+y^{2}\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.140

9833

\[ {}y^{\prime } = \frac {F \left (-\frac {2 y \ln \left (x \right )-1}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.445

9834

\[ {}y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.037

9835

\[ {}y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \]

[NONE]

1.317

9836

\[ {}y^{\prime } = \frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.305

9837

\[ {}y^{\prime } = \frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \]

[‘x=_G(y,y’)‘]

1.269

9838

\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {-2+y x}{2 y}\right )\right )}{4 x} \]

[NONE]

2.201

9839

\[ {}y^{\prime } = -\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.379

9840

\[ {}y^{\prime } = \frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.029

9841

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \]

[[_1st_order, _with_linear_symmetries]]

1.513

9842

\[ {}y^{\prime } = \frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.112

9843

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \]

[[_homogeneous, ‘class D‘]]

1.175

9844

\[ {}y^{\prime } = \frac {-2 x -y+F \left (\left (x +y\right ) x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.167

9845

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.088

9846

\[ {}y^{\prime } = \frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.302

9847

\[ {}y^{\prime } = \frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.375

9848

\[ {}y^{\prime } = \frac {y}{x \left (-1+F \left (y x \right ) y\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

198.367

9849

\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (y x -1\right ) x \right )}{x^{4}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.466

9850

\[ {}y^{\prime } = \frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.645

9851

\[ {}y^{\prime } = \frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \]

[‘y=_G(x,y’)‘]

1.739

9852

\[ {}y^{\prime } = \frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \]

[‘x=_G(y,y’)‘]

1.494

9853

\[ {}y^{\prime } = \frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \]

[[_1st_order, _with_linear_symmetries]]

2.806

9854

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.403

9855

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {3 x +1}} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

5.300

9856

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{{3}/{2}}} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5.500

9857

\[ {}y^{\prime } = \frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4.873

9858

\[ {}y^{\prime } = \frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.179

9859

\[ {}y^{\prime } = \frac {x}{y+\sqrt {x^{2}+1}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

3.320

9860

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

2.344

9861

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.958

9862

\[ {}y^{\prime } = \frac {\left (2 y \ln \left (x \right )-1\right )^{2}}{x} \]

[_Riccati]

2.581

9863

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

3.363

9864

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.592

9865

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

3.384

9866

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

2.982

9867

\[ {}y^{\prime } = \frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.723

9868

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.617

9869

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x^{2}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.321

9870

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.276

9871

\[ {}y^{\prime } = -\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \]

[‘x=_G(y,y’)‘]

1.431

9872

\[ {}y^{\prime } = \left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \]

[‘y=_G(x,y’)‘]

1.685

9873

\[ {}y^{\prime } = \frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \]

[‘y=_G(x,y’)‘]

2.651

9874

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.739

9875

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{2}}{y} \]

[_rational]

1.449

9876

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.017

9877

\[ {}y^{\prime } = -\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.967

9878

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x \right ) y \]

[[_1st_order, _with_linear_symmetries]]

0.986

9879

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.095

9880

\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.669

9881

\[ {}y^{\prime } = -\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.205

9882

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.401

9883

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.308

9884

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.395

9885

\[ {}y^{\prime } = \frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

68.647

9886

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.455

9887

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.632

9888

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

2.619

9889

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.406

9890

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.433

9891

\[ {}y^{\prime } = -\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.406

9892

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.457

9893

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.221

9894

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.359

9895

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.198

9896

\[ {}y^{\prime } = \frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

67.492

9897

\[ {}y^{\prime } = -\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.766

9898

\[ {}y^{\prime } = -\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.138

9899

\[ {}y^{\prime } = \left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.467

9900

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

1.772