2.14.3.19 problem 219 out of 2993

Link to actual problem [1330] \[ \boxed {2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Regular singular point. Difference not integer"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sqrt {x}}{\left (2 x^{2}+1\right )^{\frac {3}{2}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\left (2 x^{2}+1\right )^{\frac {3}{2}} y}{\sqrt {x}}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {hypergeom}\left (\left [\frac {1}{4}, 1\right ], \left [-\frac {1}{4}\right ], -2 x^{2}\right )}{x^{2}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{2} y}{\operatorname {hypergeom}\left (\left [\frac {1}{4}, 1\right ], \left [-\frac {1}{4}\right ], -2 x^{2}\right )}\right ] \\ \end{align*}