2.14.4.40 problem 340 out of 2993

Link to actual problem [1773] \[ \boxed {y^{\prime \prime }-2 t y^{\prime }+\lambda y=0} \] With the expansion point for the power series method at \(t = 0\).

type detected by program

{"second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= t \operatorname {KummerM}\left (\frac {1}{2}-\frac {\lambda }{4}, \frac {3}{2}, t^{2}\right )\right ] \\ \left [R &= t, S \left (R \right ) &= \frac {y}{t \operatorname {KummerM}\left (\frac {1}{2}-\frac {\lambda }{4}, \frac {3}{2}, t^{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= t \operatorname {KummerU}\left (\frac {1}{2}-\frac {\lambda }{4}, \frac {3}{2}, t^{2}\right )\right ] \\ \left [R &= t, S \left (R \right ) &= \frac {y}{t \operatorname {KummerU}\left (\frac {1}{2}-\frac {\lambda }{4}, \frac {3}{2}, t^{2}\right )}\right ] \\ \end{align*}