2.14.4.41 problem 341 out of 2993

Link to actual problem [1779] \[ \boxed {y^{\prime \prime }+y^{\prime }+y t=0} \] With initial conditions \begin {align*} [y \left (0\right ) = -1, y^{\prime }\left (0\right ) = 2] \end {align*}

With the expansion point for the power series method at \(t = 0\).

type detected by program

{"second_order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {t}{2}} \operatorname {AiryAi}\left (-t +\frac {1}{4}\right )\right ] \\ \left [R &= t, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {t}{2}} y}{\operatorname {AiryAi}\left (-t +\frac {1}{4}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {t}{2}} \operatorname {AiryBi}\left (-t +\frac {1}{4}\right )\right ] \\ \left [R &= t, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {t}{2}} y}{\operatorname {AiryBi}\left (-t +\frac {1}{4}\right )}\right ] \\ \end{align*}