2.14.5.5 problem 405 out of 2993

Link to actual problem [2398] \[ \boxed {2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Regular singular point. Difference not integer"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{\frac {3}{4}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {\sqrt {2}\, x}{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{x^{\frac {3}{4}} \operatorname {BesselJ}\left (\frac {1}{4}, \frac {\sqrt {2}\, x}{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{\frac {3}{4}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {\sqrt {2}\, x}{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{x^{\frac {3}{4}} \operatorname {BesselY}\left (\frac {1}{4}, \frac {\sqrt {2}\, x}{2}\right )}\right ] \\ \end{align*}