2.14.5.68 problem 468 out of 2993

Link to actual problem [2911] \[ \boxed {y^{\prime \prime }-{\mathrm e}^{x} y=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second_order_bessel_ode_form_A", "second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {BesselI}\left (0, 2 \,{\mathrm e}^{\frac {x}{2}}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {BesselI}\left (0, 2 \,{\mathrm e}^{\frac {x}{2}}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {BesselK}\left (0, 2 \,{\mathrm e}^{\frac {x}{2}}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {BesselK}\left (0, 2 \,{\mathrm e}^{\frac {x}{2}}\right )}\right ] \\ \end{align*}