2.14.17.16 problem 1616 out of 2993

Link to actual problem [8022] \[ \boxed {6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y=0} \]

type detected by program

{"kovacic"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{\frac {1}{3}} {\mathrm e}^{-\frac {x^{2}}{2}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x^{2}}{2}} y}{x^{\frac {1}{3}}}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {WhittakerM}\left (\frac {11}{24}, \frac {1}{24}, \frac {x^{2}}{2}\right ) {\mathrm e}^{-\frac {x^{2}}{4}}}{x^{\frac {7}{12}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {7}{12}} {\mathrm e}^{\frac {x^{2}}{4}} y}{\operatorname {WhittakerM}\left (\frac {11}{24}, \frac {1}{24}, \frac {x^{2}}{2}\right )}\right ] \\ \end{align*}