2.2.29 Problems 2801 to 2900

Table 2.59: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2801

\[ {}x^{2}+3 y^{\prime } x = y^{3}+2 y \]
i.c.

[_rational, _Abel]

17.499

2802

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

4.670

2803

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

4.936

2804

\[ {}x +y = y^{\prime } x \]

[_linear]

1.743

2805

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.565

2806

\[ {}y^{\prime } x -y = \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.996

2807

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.340

2808

\[ {}y^{\prime } x -y = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

109.239

2809

\[ {}x +y y^{\prime } = 2 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.338

2810

\[ {}y^{\prime } x -y+\sqrt {y^{2}-x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.516

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.996

2812

\[ {}\left (y x -x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.961

2813

\[ {}y+y^{\prime } x = 2 \sqrt {y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

13.359

2814

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.875

2815

\[ {}y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

127.997

2816

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.175

2817

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.554

2818

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

20.777

2819

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.194

2820

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

7.532

2821

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.343

2822

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

8.357

2823

\[ {}\left (3 y x -2 x^{2}\right ) y^{\prime } = 2 y^{2}-y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.069

2824

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

88.855

2825

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

83.027

2826

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13.847

2827

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.936

2828

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9.557

2829

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.460

2830

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.988

2831

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.435

2832

\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.985

2833

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.382

2834

\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.227

2835

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.402

2836

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.053

2837

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.339

2838

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.143

2839

\[ {}2 x +3 y+2+\left (-x +y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.351

2840

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.210

2841

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.331

2842

\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.078

2843

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

88.625

2844

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.405

2845

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.248

2846

\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

37.089

2847

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.442

2848

\[ {}3 x +y+\left (x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.122

2849

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.315

2850

\[ {}x \left (6 y x +5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.479

2851

\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3.778

2852

\[ {}2 y x -\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.012

2853

\[ {}y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

[_exact]

31.404

2854

\[ {}\frac {2 y x -1}{y}+\frac {\left (x +3 y\right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.645

2855

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

1.600

2856

\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

124.383

2857

\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_rational]

1.125

2858

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

4.130

2859

\[ {}\frac {y x +1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.454

2860

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.177

2861

\[ {}y^{2} \csc \left (x \right )^{2}+6 y x -2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

86.097

2862

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

10.331

2863

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16.596

2864

\[ {}2 y \sin \left (y x \right )+\left (2 x \sin \left (y x \right )+y^{3}\right ) y^{\prime } = 0 \]

[_exact]

114.174

2865

\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_exact]

17.924

2866

\[ {}y \,{\mathrm e}^{y x}+2 y x +\left (x \,{\mathrm e}^{y x}+x^{2}\right ) y^{\prime } = 0 \]

[_exact]

6.174

2867

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

80.030

2868

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

96.158

2869

\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \]

[_exact]

2.684

2870

\[ {}y^{\prime } x +\ln \left (x \right )-y = 0 \]

[_linear]

3.402

2871

\[ {}y x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.681

2872

\[ {}\left (x -2 y x \right ) y^{\prime }+2 y = 0 \]

[_separable]

2.269

2873

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.526

2874

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.416

2875

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5.405

2876

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.347

2877

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.459

2878

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

1.667

2879

\[ {}2 y x +\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.033

2880

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.288

2881

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

3.828

2882

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

1.168

2883

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.830

2884

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.466

2885

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7.547

2886

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.029

2887

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.113

2888

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.384

2889

\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.214

2890

\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

25.275

2891

\[ {}y^{\prime } x +2 y = x^{2} \]

[_linear]

2.395

2892

\[ {}y^{\prime }-y x = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_linear]

4.280

2893

\[ {}y^{\prime }+2 y x = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2.437

2894

\[ {}y^{\prime } = y+3 x^{2} {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.643

2895

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

0.779

2896

\[ {}y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y} \]

[_linear]

3.945

2897

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.770

2898

\[ {}y^{\prime } x -2 x^{4}-2 y = 0 \]

[_linear]

2.463

2899

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

3.605

2900

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2.161