2.14.18.24 problem 1724 out of 2993

Link to actual problem [8142] \[ \boxed {\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y=0} \]

type detected by program

{"kovacic"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {LegendreP}\left (\frac {1}{4}, \frac {3}{4}, i \sqrt {2}\, x \right )}{\left (2 x^{2}+1\right )^{\frac {3}{8}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\left (2 x^{2}+1\right )^{\frac {3}{8}} y}{\operatorname {LegendreP}\left (\frac {1}{4}, \frac {3}{4}, i \sqrt {2}\, x \right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {LegendreQ}\left (\frac {1}{4}, \frac {3}{4}, i \sqrt {2}\, x \right )}{\left (2 x^{2}+1\right )^{\frac {3}{8}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\left (2 x^{2}+1\right )^{\frac {3}{8}} y}{\operatorname {LegendreQ}\left (\frac {1}{4}, \frac {3}{4}, i \sqrt {2}\, x \right )}\right ] \\ \end{align*}