2.2.23 Problems 2201 to 2300

Table 2.59: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

2201

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y&=-{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.694

2202

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.175

2203

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=\sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.829

2204

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y&={\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.169

2205

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y&={\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.730

2206

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&={\mathrm e}^{2 x} \left (10+3 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.105

2207

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-2 y&=-{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

2208

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.162

2209

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=-2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.163

2210

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.139

2211

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y&=-{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.174

2212

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.176

2213

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.243

2214

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y&={\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

1.187

2215

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{x} \left (1-6 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 7 \\ y^{\prime \prime }\left (0\right ) &= 9 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.166

2216

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=-{\mathrm e}^{-x} \left (4-8 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.158

2217

\begin{align*} 4 y^{\prime \prime \prime }-3 y^{\prime }-y&={\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 15 \\ y^{\prime \prime }\left (0\right ) &= -17 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.152

2218

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-x} \left (20-12 x \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -4 \\ y^{\prime \prime }\left (0\right ) &= 7 \\ y^{\prime \prime \prime }\left (0\right ) &= -22 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.194

2219

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y&=30 \cos \left (x \right )-10 \sin \left (x \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -4 \\ y^{\prime \prime }\left (0\right ) &= 16 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.592

2220

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime }&=-2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ y^{\prime \prime \prime }\left (0\right ) &= -5 \\ \end{align*}

[[_high_order, _missing_y]]

3.951

2221

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=2 x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.204

2222

\begin{align*} 4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 y^{\prime } x +2 y&=30 x^{2} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.234

2223

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2} \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.212

2224

\begin{align*} 16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y&=96 x^{{5}/{2}} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.296

2225

\begin{align*} x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 y^{\prime } x +24 y&=x^{4} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.283

2226

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=12 x^{2} \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.275

2227

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=4 x \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 4 \\ y^{\prime \prime }\left (1\right ) &= 2 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.267

2228

\begin{align*} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y&=x^{3} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= 7 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.258

2229

\begin{align*} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 y^{\prime } x -16 y&=9 x^{4} \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= 5 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.271

2230

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \left (x +1\right ) \\ y \left (-1\right ) &= -6 \\ y^{\prime }\left (-1\right ) &= {\frac {43}{6}} \\ y^{\prime \prime }\left (-1\right ) &= -{\frac {5}{2}} \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.243

2231

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=9 x^{2} \\ y \left (1\right ) &= -7 \\ y^{\prime }\left (1\right ) &= -11 \\ y^{\prime \prime }\left (1\right ) &= -5 \\ y^{\prime \prime \prime }\left (1\right ) &= 6 \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.335

2232

\begin{align*} 4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y&=6 x \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 4 \\ y^{\prime \prime \prime }\left (1\right ) &= -{\frac {37}{4}} \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.326

2233

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y&=40 x^{3} \\ y \left (-1\right ) &= -1 \\ y^{\prime }\left (-1\right ) &= -7 \\ y^{\prime \prime }\left (-1\right ) &= -1 \\ y^{\prime \prime \prime }\left (-1\right ) &= -31 \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.305

2234

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=F \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.230

2235

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=F \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.245

2236

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=F \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.270

2237

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=F \left (x \right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.325

2238

\begin{align*} y_{1}^{\prime }&=y_{1}+2 y_{2} \\ y_{2}^{\prime }&=2 y_{1}+y_{2} \\ \end{align*}

system_of_ODEs

0.291

2239

\begin{align*} y_{1}^{\prime }&=-\frac {5 y_{1}}{4}+\frac {3 y_{2}}{4} \\ y_{2}^{\prime }&=\frac {3 y_{1}}{4}-\frac {5 y_{2}}{4} \\ \end{align*}

system_of_ODEs

0.288

2240

\begin{align*} y_{1}^{\prime }&=-\frac {4 y_{1}}{5}+\frac {3 y_{2}}{5} \\ y_{2}^{\prime }&=-\frac {2 y_{1}}{5}-\frac {11 y_{2}}{5} \\ \end{align*}

system_of_ODEs

0.315

2241

\begin{align*} y_{1}^{\prime }&=-y_{1}-4 y_{2} \\ y_{2}^{\prime }&=-y_{1}-y_{2} \\ \end{align*}

system_of_ODEs

0.296

2242

\begin{align*} y_{1}^{\prime }&=2 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=-y_{1}-y_{2} \\ \end{align*}

system_of_ODEs

0.305

2243

\begin{align*} y_{1}^{\prime }&=4 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=2 y_{1}-y_{2} \\ \end{align*}

system_of_ODEs

0.293

2244

\begin{align*} y_{1}^{\prime }&=-6 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

system_of_ODEs

0.308

2245

\begin{align*} y_{1}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{2}^{\prime }&=y_{1}-2 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=-4 y_{1}+y_{2}-y_{3} \\ \end{align*}

system_of_ODEs

0.782

2246

\begin{align*} y_{1}^{\prime }&=-6 y_{1}-4 y_{2}-8 y_{3} \\ y_{2}^{\prime }&=-4 y_{1}-4 y_{3} \\ y_{3}^{\prime }&=-8 y_{1}-4 y_{2}-6 y_{3} \\ \end{align*}

system_of_ODEs

0.701

2247

\begin{align*} y_{1}^{\prime }&=3 y_{1}+5 y_{2}+8 y_{3} \\ y_{2}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-y_{2}-y_{3} \\ \end{align*}

system_of_ODEs

0.784

2248

\begin{align*} y_{1}^{\prime }&=y_{1}-y_{2}+2 y_{3} \\ y_{2}^{\prime }&=12 y_{1}-4 y_{2}+10 y_{3} \\ y_{3}^{\prime }&=-6 y_{1}+y_{2}-7 y_{3} \\ \end{align*}

system_of_ODEs

0.784

2249

\begin{align*} y_{1}^{\prime }&=4 y_{1}-y_{2}-4 y_{3} \\ y_{2}^{\prime }&=4 y_{1}-3 y_{2}-2 y_{3} \\ y_{3}^{\prime }&=y_{1}-y_{2}-y_{3} \\ \end{align*}

system_of_ODEs

0.761

2250

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+2 y_{2}-6 y_{3} \\ y_{2}^{\prime }&=2 y_{1}+6 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=-2 y_{1}-2 y_{2}+2 y_{3} \\ \end{align*}

system_of_ODEs

0.761

2251

\begin{align*} y_{1}^{\prime }&=3 y_{1}+2 y_{2}-2 y_{3} \\ y_{2}^{\prime }&=-2 y_{1}+7 y_{2}-2 y_{3} \\ y_{3}^{\prime }&=-10 y_{1}+10 y_{2}-5 y_{3} \\ \end{align*}

system_of_ODEs

0.686

2252

\begin{align*} y_{1}^{\prime }&=3 y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }&=3 y_{1}+5 y_{2}+y_{3} \\ y_{3}^{\prime }&=-6 y_{1}+2 y_{2}+4 y_{3} \\ \end{align*}

system_of_ODEs

0.662

2253

\begin{align*} y_{1}^{\prime }&=3 y_{1}+4 y_{2} \\ y_{2}^{\prime }&=-y_{1}+7 y_{2} \\ \end{align*}

system_of_ODEs

0.260

2254

\begin{align*} y_{1}^{\prime }&=-y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

system_of_ODEs

0.248

2255

\begin{align*} y_{1}^{\prime }&=-7 y_{1}+4 y_{2} \\ y_{2}^{\prime }&=-y_{1}-11 y_{2} \\ \end{align*}

system_of_ODEs

0.269

2256

\begin{align*} y_{1}^{\prime }&=3 y_{1}+y_{2} \\ y_{2}^{\prime }&=-y_{1}+y_{2} \\ \end{align*}

system_of_ODEs

0.240

2257

\begin{align*} y_{1}^{\prime }&=4 y_{1}+12 y_{2} \\ y_{2}^{\prime }&=-3 y_{1}-8 y_{2} \\ \end{align*}

system_of_ODEs

0.265

2258

\begin{align*} y_{1}^{\prime }&=-10 y_{1}+9 y_{2} \\ y_{2}^{\prime }&=-4 y_{1}+2 y_{2} \\ \end{align*}

system_of_ODEs

0.257

2259

\begin{align*} y_{1}^{\prime }&=-13 y_{1}+16 y_{2} \\ y_{2}^{\prime }&=-9 y_{1}+11 y_{2} \\ \end{align*}

system_of_ODEs

0.263

2260

\begin{align*} y_{1}^{\prime }&=2 y_{2}+y_{3} \\ y_{2}^{\prime }&=-4 y_{1}+6 y_{2}+y_{3} \\ y_{3}^{\prime }&=4 y_{2}+2 y_{3} \\ \end{align*}

system_of_ODEs

0.667

2261

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{3}+\frac {y_{2}}{3}-y_{3} \\ y_{2}^{\prime }&=-\frac {4 y_{1}}{3}-\frac {4 y_{2}}{3}+y_{3} \\ y_{3}^{\prime }&=-\frac {2 y_{1}}{3}+\frac {y_{2}}{3} \\ \end{align*}

system_of_ODEs

0.707

2262

\begin{align*} y_{1}^{\prime }&=-y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }&=-2 y_{1}+2 y_{3} \\ y_{3}^{\prime }&=-y_{1}+3 y_{2}-y_{3} \\ \end{align*}

system_of_ODEs

0.698

2263

\begin{align*} y_{1}^{\prime }&=4 y_{1}-2 y_{2}-2 y_{3} \\ y_{2}^{\prime }&=-2 y_{1}+3 y_{2}-y_{3} \\ y_{3}^{\prime }&=2 y_{1}-y_{2}+3 y_{3} \\ \end{align*}

system_of_ODEs

0.729

2264

\begin{align*} y_{1}^{\prime }&=6 y_{1}-5 y_{2}+3 y_{3} \\ y_{2}^{\prime }&=2 y_{1}-y_{2}+3 y_{3} \\ y_{3}^{\prime }&=2 y_{1}+y_{2}+y_{3} \\ \end{align*}

system_of_ODEs

0.728

2265

\begin{align*} y_{1}^{\prime }&=-11 y_{1}+8 y_{2} \\ y_{2}^{\prime }&=-2 y_{1}-3 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 6 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.336

2266

\begin{align*} y_{1}^{\prime }&=15 y_{1}-9 y_{2} \\ y_{2}^{\prime }&=16 y_{1}-9 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 5 \\ y_{2} \left (0\right ) &= 8 \\ \end{align*}

system_of_ODEs

0.507

2267

\begin{align*} y_{1}^{\prime }&=-3 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=y_{1}-7 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.293

2268

\begin{align*} y_{1}^{\prime }&=-7 y_{1}+24 y_{2} \\ y_{2}^{\prime }&=-6 y_{1}+17 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 3 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.293

2269

\begin{align*} y_{1}^{\prime }&=-7 y_{1}+3 y_{2} \\ y_{2}^{\prime }&=-3 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.285

2270

\begin{align*} y_{1}^{\prime }&=-y_{1}+y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-y_{2}-y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 6 \\ y_{2} \left (0\right ) &= 5 \\ y_{3} \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.754

2271

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+2 y_{2}+y_{3} \\ y_{2}^{\prime }&=-2 y_{1}+2 y_{2}+y_{3} \\ y_{3}^{\prime }&=-3 y_{1}+3 y_{2}+2 y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -6 \\ y_{2} \left (0\right ) &= -2 \\ y_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.671

2272

\begin{align*} y_{1}^{\prime }&=-7 y_{1}-4 y_{2}+4 y_{3} \\ y_{2}^{\prime }&=y_{1}+y_{3} \\ y_{3}^{\prime }&=-9 y_{1}-5 y_{2}+6 y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -6 \\ y_{2} \left (0\right ) &= 9 \\ y_{3} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

1.263

2273

\begin{align*} y_{1}^{\prime }&=-y_{1}-4 y_{2}-y_{3} \\ y_{2}^{\prime }&=3 y_{1}+6 y_{2}+y_{3} \\ y_{3}^{\prime }&=-3 y_{1}-2 y_{2}+3 y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -2 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.734

2274

\begin{align*} y_{1}^{\prime }&=4 y_{1}-8 y_{2}-4 y_{3} \\ y_{2}^{\prime }&=-3 y_{1}-y_{2}-4 y_{3} \\ y_{3}^{\prime }&=y_{1}-y_{2}+9 y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -4 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

1.000

2275

\begin{align*} y_{1}^{\prime }&=-5 y_{1}-y_{2}+11 y_{3} \\ y_{2}^{\prime }&=-7 y_{1}+y_{2}+13 y_{3} \\ y_{3}^{\prime }&=-4 y_{1}+8 y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 2 \\ y_{3} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.671

2276

\begin{align*} y_{1}^{\prime }&=5 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }&=-y_{1}+9 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=-2 y_{1}+2 y_{2}+4 y_{3} \\ \end{align*}

system_of_ODEs

0.673

2277

\begin{align*} y_{1}^{\prime }&=y_{1}+10 y_{2}-12 y_{3} \\ y_{2}^{\prime }&=2 y_{1}+2 y_{2}+3 y_{3} \\ y_{3}^{\prime }&=2 y_{1}-y_{2}+6 y_{3} \\ \end{align*}

system_of_ODEs

0.679

2278

\begin{align*} y_{1}^{\prime }&=-6 y_{1}-4 y_{2}-4 y_{3} \\ y_{2}^{\prime }&=2 y_{1}-y_{2}+y_{3} \\ y_{3}^{\prime }&=2 y_{1}+3 y_{2}+y_{3} \\ \end{align*}

system_of_ODEs

0.664

2279

\begin{align*} y_{1}^{\prime }&=2 y_{2}-2 y_{3} \\ y_{2}^{\prime }&=-y_{1}+5 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=y_{1}+y_{2}+y_{3} \\ \end{align*}

system_of_ODEs

0.677

2280

\begin{align*} y_{1}^{\prime }&=-2 y_{1}-12 y_{2}+10 y_{3} \\ y_{2}^{\prime }&=2 y_{1}-24 y_{2}+11 y_{3} \\ y_{3}^{\prime }&=2 y_{1}-24 y_{2}+8 y_{3} \\ \end{align*}

system_of_ODEs

0.724

2281

\begin{align*} y_{1}^{\prime }&=-y_{1}-12 y_{2}+8 y_{3} \\ y_{2}^{\prime }&=y_{1}-9 y_{2}+4 y_{3} \\ y_{3}^{\prime }&=y_{1}-6 y_{2}+y_{3} \\ \end{align*}

system_of_ODEs

0.674

2282

\begin{align*} y_{1}^{\prime }&=-4 y_{1}-y_{3} \\ y_{2}^{\prime }&=-y_{1}-3 y_{2}-y_{3} \\ y_{3}^{\prime }&=y_{1}-2 y_{3} \\ \end{align*}

system_of_ODEs

0.625

2283

\begin{align*} y_{1}^{\prime }&=-3 y_{1}-3 y_{2}+4 y_{3} \\ y_{2}^{\prime }&=4 y_{1}+5 y_{2}-8 y_{3} \\ y_{3}^{\prime }&=2 y_{1}+3 y_{2}-5 y_{3} \\ \end{align*}

system_of_ODEs

0.698

2284

\begin{align*} y_{1}^{\prime }&=-3 y_{1}-y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2} \\ y_{3}^{\prime }&=-y_{1}-y_{2}-2 y_{3} \\ \end{align*}

system_of_ODEs

0.615

2285

\begin{align*} y_{1}^{\prime }&=-y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-5 y_{1}+5 y_{2} \\ \end{align*}

system_of_ODEs

0.627

2286

\begin{align*} y_{1}^{\prime }&=-11 y_{1}+4 y_{2} \\ y_{2}^{\prime }&=-26 y_{1}+9 y_{2} \\ \end{align*}

system_of_ODEs

0.416

2287

\begin{align*} y_{1}^{\prime }&=y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-4 y_{1}+5 y_{2} \\ \end{align*}

system_of_ODEs

0.428

2288

\begin{align*} y_{1}^{\prime }&=5 y_{1}-6 y_{2} \\ y_{2}^{\prime }&=3 y_{1}-y_{2} \\ \end{align*}

system_of_ODEs

0.415

2289

\begin{align*} y_{1}^{\prime }&=-3 y_{1}-3 y_{2}+y_{3} \\ y_{2}^{\prime }&=2 y_{2}+2 y_{3} \\ y_{3}^{\prime }&=5 y_{1}+y_{2}+y_{3} \\ \end{align*}

system_of_ODEs

9.306

2290

\begin{align*} y_{1}^{\prime }&=-3 y_{1}+3 y_{2}+y_{3} \\ y_{2}^{\prime }&=y_{1}-5 y_{2}-3 y_{3} \\ y_{3}^{\prime }&=-3 y_{1}+7 y_{2}+3 y_{3} \\ \end{align*}

system_of_ODEs

1.049

2291

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }&=y_{2}+y_{3} \\ y_{3}^{\prime }&=y_{1}+y_{3} \\ \end{align*}

system_of_ODEs

0.990

2292

\begin{align*} y_{1}^{\prime }&=-3 y_{1}+y_{2}-3 y_{3} \\ y_{2}^{\prime }&=4 y_{1}-y_{2}+2 y_{3} \\ y_{3}^{\prime }&=4 y_{1}-2 y_{2}+3 y_{3} \\ \end{align*}

system_of_ODEs

1.027

2293

\begin{align*} y^{\prime }+\sin \left (t \right ) y&=0 \\ y \left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[_separable]

0.151

2294

\begin{align*} y^{\prime }+{\mathrm e}^{t^{2}} y&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

0.271

2295

\begin{align*} y^{\prime }-2 t y&=t \\ \end{align*}

[_separable]

0.078

2296

\begin{align*} 2 t y+y^{\prime }&=t \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

0.148

2297

\begin{align*} y+y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (2\right ) &= 3 \\ \end{align*}

[_linear]

0.326

2298

\begin{align*} y \cos \left (t \right )+y^{\prime }&=0 \\ \end{align*}

[_separable]

1.932

2299

\begin{align*} \sqrt {t}\, \sin \left (t \right ) y+y^{\prime }&=0 \\ \end{align*}

[_separable]

2.721

2300

\begin{align*} \frac {2 t y}{t^{2}+1}+y^{\prime }&=\frac {1}{t^{2}+1} \\ \end{align*}

[_linear]

1.243