2.2.30 Problems 2901 to 3000

Table 2.61: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2901

\[ {}y^{\prime } x = 5 y+x +1 \]

[_linear]

2.837

2902

\[ {}x^{2} y^{\prime }+y-2 y x -2 x^{2} = 0 \]

[_linear]

4.354

2903

\[ {}\left (x +1\right ) y^{\prime }+2 y = \frac {{\mathrm e}^{x}}{x +1} \]

[_linear]

1.648

2904

\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.473

2905

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

5.345

2906

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

[_linear]

4.961

2907

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

[_linear]

7.725

2908

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

5.010

2909

\[ {}y^{2}+1+\left (2 y x -y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.423

2910

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

[_linear]

1.738

2911

\[ {}y+y^{3}+4 \left (x y^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.512

2912

\[ {}2 y-y x -3+y^{\prime } x = 0 \]
i.c.

[_linear]

1.284

2913

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

11.879

2914

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]
i.c.

[_linear]

1.451

2915

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

8.109

2916

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

9.152

2917

\[ {}\cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

[‘y=_G(x,y’)‘]

2.548

2918

\[ {}\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

[‘y=_G(x,y’)‘]

3.041

2919

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

22.375

2920

\[ {}y^{\prime }-y x = \sqrt {y}\, x \,{\mathrm e}^{x^{2}} \]

[_Bernoulli]

2.179

2921

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8.909

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.896

2923

\[ {}\csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

5.866

2924

\[ {}y^{\prime }-y x = \frac {x}{y} \]

[_separable]

2.465

2925

\[ {}y+y^{\prime } x = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

7.847

2926

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2.428

2927

\[ {}y^{\prime } x +2 y = 3 x^{3} y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

22.669

2928

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

5.757

2929

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

88.289

2930

\[ {}\left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

4.744

2931

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right ) \]

[_Bernoulli]

3.620

2932

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{-t} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

7.072

2933

\[ {}y^{\prime } = x \left (1-{\mathrm e}^{2 y-x^{2}}\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.266

2934

\[ {}2 y = \left (x^{2} y^{4}+x \right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

20.275

2935

\[ {}1+x y \left (1+x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.883

2936

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = x \left (-x^{2}+1\right ) \sqrt {y} \]
i.c.

[_rational, _Bernoulli]

5.136

2937

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

2.354

2938

\[ {}y^{2}+\left (y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

35.062

2939

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.734

2940

\[ {}x \ln \left (x \right ) y^{\prime }-x +y = 0 \]

[_linear]

4.673

2941

\[ {}x -2 y+1+\left (y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.261

2942

\[ {}2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 x^{2} y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

2.125

2943

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

5.759

2944

\[ {}6+2 y = x y y^{\prime } \]

[_separable]

3.982

2945

\[ {}x -3 y = \left (3 y-x +2\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.650

2946

\[ {}y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

99.072

2947

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

31.405

2948

\[ {}y-y^{\prime } x = 2 y^{2}+2 y^{\prime } \]

[_separable]

6.821

2949

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

7.433

2950

\[ {}y^{\prime }+y \ln \left (y\right ) \tan \left (x \right ) = 2 y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.259

2951

\[ {}2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8.163

2952

\[ {}y+\left (3 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

47.447

2953

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

6.077

2954

\[ {}\left (3 x +4 y\right ) y^{\prime }+y+2 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.768

2955

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

2.631

2956

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

21.318

2957

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

6.296

2958

\[ {}x +y+\left (2 x +3 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.637

2959

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

11.812

2960

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

[_linear]

1.471

2961

\[ {}3 x -6 = x y y^{\prime } \]

[_separable]

4.818

2962

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

2.026

2963

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12.227

2964

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

12.788

2965

\[ {}y \sqrt {x^{2}+y^{2}}+y x = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

44.260

2966

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

7.752

2967

\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

7.471

2968

\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 y x -y^{2}\right ) y^{\prime } = 0 \]

[_exact]

107.572

2969

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

19.819

2970

\[ {}y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.800

2971

\[ {}x +\left (2 x +3 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

9.375

2972

\[ {}y^{\prime } x -5 y-x \sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

22.917

2973

\[ {}x \sqrt {1-y}-\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.606

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.146

2975

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

2.124

2976

\[ {}\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \]
i.c.

[_exact]

20.364

2977

\[ {}y^{\prime } x -2 y-2 x^{4} y^{3} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15.267

2978

\[ {}\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

20.909

2979

\[ {}y^{\prime } x = x^{4}+4 y \]
i.c.

[_linear]

1.565

2980

\[ {}y+y^{\prime } x = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

20.298

2981

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

7.383

2982

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

41.307

2983

\[ {}3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

130.062

2984

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

1.714

2985

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.806

2986

\[ {}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime } \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.997

2987

\[ {}y^{2}+\left (x^{3}-2 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

45.913

2988

\[ {}2 y x -2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.725

2989

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

376.298

2990

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

12.832

2991

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.694

2992

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7.537

2993

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

0.510

2994

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.450

2995

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.458

2996

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.470

2997

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.883

2998

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.869

2999

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.897

3000

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.866