2.14.19.89 problem 1889 out of 2993

Link to actual problem [9353] \[ \boxed {y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {x}{2}} \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}}, i \sqrt {c}, 2 i \sqrt {a}\, {\mathrm e}^{x}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x}{2}} y}{\operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}}, i \sqrt {c}, 2 i \sqrt {a}\, {\mathrm e}^{x}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {x}{2}} \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}}, i \sqrt {c}, 2 i \sqrt {a}\, {\mathrm e}^{x}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x}{2}} y}{\operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}}, i \sqrt {c}, 2 i \sqrt {a}\, {\mathrm e}^{x}\right )}\right ] \\ \end{align*}