| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.549 |
|
| \begin{align*}
t^{2} y+y^{\prime }&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.195 |
|
| \begin{align*}
t^{2} y+y^{\prime }&=t^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.653 |
|
| \begin{align*}
\frac {t y}{t^{2}+1}+y^{\prime }&=1-\frac {t^{3} y}{t^{4}+1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.532 |
|
| \begin{align*}
\sqrt {t^{2}+1}\, y+y^{\prime }&=0 \\
y \left (0\right ) &= \sqrt {5} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.845 |
|
| \begin{align*}
\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| \begin{align*}
y^{\prime }-2 t y&=t \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.772 |
|
| \begin{align*}
t y+y^{\prime }&=1+t \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| \begin{align*}
y+y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| \begin{align*}
y^{\prime }-2 t y&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.242 |
|
| \begin{align*}
t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.362 |
|
| \begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=t \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.115 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=\frac {1}{t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
y^{\prime }+\frac {y}{\sqrt {t}}&={\mathrm e}^{\frac {\sqrt {t}}{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=\cos \left (t \right )+\frac {\sin \left (t \right )}{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| \begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\cos \left (t \right ) \sin \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.802 |
|
| \begin{align*}
y^{\prime }&=\left (1+t \right ) \left (1+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.582 |
|
| \begin{align*}
y^{\prime }&=1-t +y^{2}-t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.279 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3+t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
\cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.598 |
|
| \begin{align*}
t^{2} \left (1+y^{2}\right )+2 y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t}{y+t^{2} y} \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.424 |
|
| \begin{align*}
\sqrt {t^{2}+1}\, y^{\prime }&=\frac {t y^{3}}{\sqrt {t^{2}+1}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.957 |
|
| \begin{align*}
y^{\prime }&=\frac {3 t^{2}+4 t +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| \begin{align*}
\cos \left (y\right ) y^{\prime }&=-\frac {t \sin \left (y\right )}{t^{2}+1} \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.007 |
|
| \begin{align*}
y^{\prime }&=k \left (a -y\right ) \left (b -y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.782 |
|
| \begin{align*}
3 y^{\prime } t&=y \cos \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.933 |
|
| \begin{align*}
y^{\prime } t&=y+\sqrt {t^{2}+y^{2}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| \begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
129.258 |
|
| \begin{align*}
\left (t -\sqrt {t y}\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| \begin{align*}
y^{\prime }&=\frac {y+t}{t -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| \begin{align*}
{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.299 |
|
| \begin{align*}
y^{\prime }&=\frac {t +y+1}{t -y+3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.026 |
|
| \begin{align*}
1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.646 |
|
| \begin{align*}
t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| \begin{align*}
1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
1.908 |
|
| \begin{align*}
\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
12.361 |
|
| \begin{align*}
\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
2 t y^{3}+3 t^{2} y^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
2.557 |
|
| \begin{align*}
3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.281 |
|
| \begin{align*}
2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
4.516 |
|
| \begin{align*}
3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.382 |
|
| \begin{align*}
y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
67.116 |
|
| \begin{align*}
y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✗ |
✓ |
✗ |
✗ |
11.002 |
|
| \begin{align*}
y^{\prime }&=t +y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
17.586 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
68.148 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
65.867 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Riccati] |
✗ |
✗ |
✗ |
✗ |
80.920 |
|
| \begin{align*}
y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.026 |
|
| \begin{align*}
y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\
y \left (0\right ) &= {\frac {2}{5}} \\
\end{align*} |
[_Abel] |
✗ |
✗ |
✗ |
✗ |
0.753 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\left (-t +y\right )^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.967 |
|
| \begin{align*}
y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.183 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.202 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\
y \left (0\right ) &= 100 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.673 |
|
| \begin{align*}
y^{\prime }&=t^{2}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
7.066 |
|
| \begin{align*}
y^{\prime }&=t \left (1+y\right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.234 |
|
| \begin{align*}
y^{\prime }&=t \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.093 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.220 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } t +y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.497 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| \begin{align*}
6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.144 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.232 |
|
| \begin{align*}
3 y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.790 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.628 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.611 |
|
| \begin{align*}
5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.181 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.237 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+5 y^{\prime } t -5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.298 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t -2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
4.364 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.257 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.795 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.378 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.971 |
|
| \begin{align*}
4 y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.649 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.651 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.595 |
|
| \begin{align*}
2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.899 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.421 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.218 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.689 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.007 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.242 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.113 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.917 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.743 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
24.362 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.162 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
36.260 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
14.463 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
26.915 |
|
| \begin{align*}
\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
14.291 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
58.189 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.635 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-y^{\prime } t +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.628 |
|