2.14.20.20 problem 1920 out of 2993

Link to actual problem [9397] \[ \boxed {y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sin \left (x \right )^{-n +\frac {1}{2}} \operatorname {LegendreP}\left (-\frac {1}{2}+\sqrt {-a^{2}+2 n^{2}}, n -\frac {1}{2}, \cos \left (x \right )\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sin \left (x \right )^{n} y}{\sqrt {\sin \left (x \right )}\, \operatorname {LegendreP}\left (-\frac {1}{2}+\sqrt {-a^{2}+2 n^{2}}, n -\frac {1}{2}, \cos \left (x \right )\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sin \left (x \right )^{-n +\frac {1}{2}} \operatorname {LegendreQ}\left (-\frac {1}{2}+\sqrt {-a^{2}+2 n^{2}}, n -\frac {1}{2}, \cos \left (x \right )\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sin \left (x \right )^{n} y}{\sqrt {\sin \left (x \right )}\, \operatorname {LegendreQ}\left (-\frac {1}{2}+\sqrt {-a^{2}+2 n^{2}}, n -\frac {1}{2}, \cos \left (x \right )\right )}\right ] \\ \end{align*}