2.2.32 Problems 3101 to 3200

Table 2.65: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3101

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.862

3102

\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

[_linear]

2.034

3103

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.677

3104

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.108

3105

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.803

3106

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

4.310

3107

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

4.159

3108

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.868

3109

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

4.682

3110

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.830

3111

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.869

3112

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.722

3113

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.249

3114

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.112

3115

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.834

3116

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.757

3117

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.000

3118

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.707

3119

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.787

3120

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.700

3121

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.710

3122

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.392

3123

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

[[_2nd_order, _with_linear_symmetries]]

0.718

3124

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.102

3125

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

0.124

3126

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

3.941

3127

\[ {}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

[[_3rd_order, _missing_y]]

0.245

3128

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

[[_3rd_order, _missing_y]]

0.117

3129

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.424

3130

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.127

3131

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.203

3132

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.168

3133

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]

[[_high_order, _missing_y]]

0.381

3134

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.695

3135

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

0.132

3136

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.239

3137

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.684

3138

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.409

3139

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.718

3140

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.616

3141

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.180

3142

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

0.118

3143

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.698

3144

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.334

3145

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.148

3146

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

0.236

3147

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.592

3148

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.751

3149

\[ {}y^{\prime \prime }-y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.498

3150

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

4.376

3151

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

2.438

3152

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.352

3153

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

6.833

3154

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

2.040

3155

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.818

3156

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

1.263

3157

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3.398

3158

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

7.846

3159

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

5.786

3160

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.803

3161

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6.128

3162

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.270

3163

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6.890

3164

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

22.125

3165

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

82.432

3166

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

0.323

3167

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 y^{\prime } x +10 y = \frac {4}{x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

0.498

3168

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 y^{\prime } x -6 y = \cos \left (\ln \left (x \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

7.879

3169

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

1.028

3170

\[ {}\left [\begin {array}{c} x^{\prime }-x=\cos \left (t \right ) \\ y^{\prime }+y=4 t \end {array}\right ] \]

system_of_ODEs

0.480

3171

\[ {}\left [\begin {array}{c} x^{\prime }+5 x=3 t^{2} \\ y^{\prime }+y={\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

0.393

3172

\[ {}\left [\begin {array}{c} x^{\prime }+2 x=3 t \\ x^{\prime }+2 y^{\prime }+y=\cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.741

3173

\[ {}\left [\begin {array}{c} x^{\prime }-x+y=2 \sin \left (t \right ) \\ x^{\prime }+y^{\prime }=3 y-3 x \end {array}\right ] \]

system_of_ODEs

0.671

3174

\[ {}\left [\begin {array}{c} 2 x^{\prime }+3 x-y={\mathrm e}^{t} \\ 5 x-3 y^{\prime }=y+2 t \end {array}\right ] \]

system_of_ODEs

0.652

3175

\[ {}\left [\begin {array}{c} 5 y^{\prime }-3 x^{\prime }-5 y=5 t \\ 3 x^{\prime }-5 y^{\prime }-2 x=0 \end {array}\right ] \]

system_of_ODEs

0.410

3176

\[ {}\left [\begin {array}{c} x^{\prime }=3 x \\ y^{\prime }=2 x+3 y \\ z^{\prime }=3 y-2 z \end {array}\right ] \]

system_of_ODEs

0.445

3177

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

1.447

3178

\[ {}y^{\prime \prime } = k^{2} y \]

[[_2nd_order, _missing_x]]

8.935

3179

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

[[_2nd_order, _missing_x]]

7.722

3180

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.268

3181

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

75.647

3182

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

0.970

3183

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

1.131

3184

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.562

3185

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_x]]

2.967

3186

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

1.149

3187

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

[[_2nd_order, _missing_y]]

2.312

3188

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

0.693

3189

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.631

3190

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

41.918

3191

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

0.819

3192

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.691

3193

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.955

3194

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

5.267

3195

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.493

3196

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.226

3197

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.558

3198

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13.224

3199

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

3.735

3200

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.050