2.14.20.38 problem 1938 out of 2993

Link to actual problem [9418] \[ \boxed {a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{b x} \operatorname {KummerM}\left (-\frac {d}{2}, \frac {1}{2}, \frac {\left (a b -c -x \right )^{2}}{2 a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-b x} y}{\operatorname {KummerM}\left (-\frac {d}{2}, \frac {1}{2}, \frac {\left (a b -c -x \right )^{2}}{2 a}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{b x} \operatorname {KummerU}\left (-\frac {d}{2}, \frac {1}{2}, \frac {\left (a b -c -x \right )^{2}}{2 a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-b x} y}{\operatorname {KummerU}\left (-\frac {d}{2}, \frac {1}{2}, \frac {\left (a b -c -x \right )^{2}}{2 a}\right )}\right ] \\ \end{align*}