2.14.20.84 problem 1984 out of 2993

Link to actual problem [9487] \[ \boxed {x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y=0} \]

type detected by program

{"kovacic"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, {\mathrm e}^{b x} \operatorname {HeunD}\left (-4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-b x} y}{\sqrt {x}\, \operatorname {HeunD}\left (-4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, {\mathrm e}^{\frac {-b \,x^{2}+a}{x}} \operatorname {HeunD}\left (4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-\frac {-b \,x^{2}+a}{x}} y}{\sqrt {x}\, \operatorname {HeunD}\left (4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right )}\right ] \\ \end{align*}