2.14.21.8 problem 2008 out of 2993

Link to actual problem [9526] \[ \boxed {x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {BesselI}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-\frac {x}{2}} \sqrt {x}\, y}{\operatorname {BesselI}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {{\mathrm e}^{\frac {x}{2}} \operatorname {BesselK}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-\frac {x}{2}} \sqrt {x}\, y}{\operatorname {BesselK}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right )}\right ] \\ \end{align*}