2.2.33 Problems 3201 to 3300

Table 2.67: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3201

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.621

3202

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.541

3203

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x]]

7.149

3204

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.303

3205

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

8.461

3206

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

75.258

3207

\[ {}y^{\prime \prime } = y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.404

3208

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.968

3209

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.817

3210

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.052

3211

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

3.763

3212

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

94.586

3213

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.164

3214

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

278.162

3215

\[ {}x^{\prime \prime }-k^{2} x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

12.272

3216

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.385

3217

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

1.779

3218

\[ {}4 y^{2} = {y^{\prime }}^{2} x^{2} \]

[_separable]

2.608

3219

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

0.582

3220

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2} = 0 \]

[‘y=_G(x,y’)‘]

2.480

3221

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.277

3222

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.451

3223

\[ {}x y {y^{\prime }}^{2}+\left (y x -1\right ) y^{\prime } = y \]

[‘y=_G(x,y’)‘]

5.936

3224

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

5.321

3225

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.201

3226

\[ {}{y^{\prime }}^{3}+\left (x +y-2 y x \right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

1.810

3227

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

1.779

3228

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.965

3229

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

1.731

3230

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

[_quadrature]

0.362

3231

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.261

3232

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

0.332

3233

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.940

3234

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.351

3235

\[ {}2 x^{2} y+{y^{\prime }}^{2} = y^{\prime } x^{3} \]

[[_1st_order, _with_linear_symmetries]]

2.711

3236

\[ {}y {y^{\prime }}^{2} = 3 y^{\prime } x +y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

46.912

3237

\[ {}8 x +1 = y {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

3.457

3238

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

[_quadrature]

0.211

3239

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.647

3240

\[ {}x^{2}-3 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9.293

3241

\[ {}y+2 y^{\prime } x = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.668

3242

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

[_quadrature]

0.112

3243

\[ {}x = y-{y^{\prime }}^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

6.267

3244

\[ {}x +2 y y^{\prime } = {y^{\prime }}^{2} x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.755

3245

\[ {}4 x -2 y y^{\prime }+{y^{\prime }}^{2} x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.476

3246

\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \]

[_dAlembert]

0.141

3247

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.586

3248

\[ {}2 x +{y^{\prime }}^{2} x = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.799

3249

\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \]

[_dAlembert]

3.727

3250

\[ {}4 {y^{\prime }}^{2} x +2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.592

3251

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.414

3252

\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.391

3253

\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \]

[[_1st_order, _with_linear_symmetries]]

10.430

3254

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.679

3255

\[ {}2 {y^{\prime }}^{5}+2 y^{\prime } x = y \]

[_dAlembert]

0.538

3256

\[ {}\frac {1}{{y^{\prime }}^{2}}+y^{\prime } x = 2 y \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

27.344

3257

\[ {}2 y = 3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

6.281

3258

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.249

3259

\[ {}y = y^{\prime } x +\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.829

3260

\[ {}y = y^{\prime } x -\sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _Clairaut]

0.865

3261

\[ {}y = y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.849

3262

\[ {}y = y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.919

3263

\[ {}y = y^{\prime } x -{y^{\prime }}^{{2}/{3}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.346

3264

\[ {}y = y^{\prime } x +{\mathrm e}^{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.409

3265

\[ {}\left (y-y^{\prime } x \right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.918

3266

\[ {}{y^{\prime }}^{2} x -y y^{\prime }-2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.260

3267

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3.836

3268

\[ {}y^{\prime } = \sqrt {1-y} \]
i.c.

[_quadrature]

0.080

3269

\[ {}y^{\prime } = y x -x^{2} \]
i.c.

[_linear]

0.191

3270

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

0.099

3271

\[ {}y^{\prime } = 3 x +\frac {y}{x} \]
i.c.

[_linear]

0.696

3272

\[ {}y^{\prime } = \ln \left (y x \right ) \]
i.c.

[‘y=_G(x,y’)‘]

0.173

3273

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

0.079

3274

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

0.164

3275

\[ {}y^{\prime } = \sqrt {y x +1} \]
i.c.

[‘y=_G(x,y’)‘]

0.628

3276

\[ {}y^{\prime } = \cos \left (x \right )+\sin \left (y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

0.122

3277

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.764

3278

\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.262

3279

\[ {}y^{\prime \prime }+2 y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.118

3280

\[ {}y^{\prime \prime } = \sin \left (y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.359

3281

\[ {}y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.151

3282

\[ {}y^{\prime \prime } = \sin \left (y x \right ) \]
i.c.

[NONE]

0.542

3283

\[ {}y^{\prime \prime } = \cos \left (y x \right ) \]
i.c.

[NONE]

0.549

3284

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.938

3285

\[ {}3 x \left (2+3 x \right ) y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.664

3286

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.127

3287

\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.498

3288

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.087

3289

\[ {}9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.543

3290

\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.157

3291

\[ {}2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.582

3292

\[ {}3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.131

3293

\[ {}4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.639

3294

\[ {}4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.273

3295

\[ {}9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.592

3296

\[ {}4 x^{2} \left (1-x \right ) y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

3297

\[ {}2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.602

3298

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.083

3299

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.562

3300

\[ {}\left (8-x \right ) x^{2} y^{\prime \prime }+6 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.118