2.2.26 Problems 2501 to 2600

Table 2.65: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

2501

\begin{align*} y^{\prime } t&=y+\sqrt {t^{2}+y^{2}} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.758

2502

\begin{align*} 2 t y y^{\prime }&=3 y^{2}-t^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

133.092

2503

\begin{align*} \left (t -\sqrt {t y}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.656

2504

\begin{align*} y^{\prime }&=\frac {y+t}{t -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.661

2505

\begin{align*} {\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.460

2506

\begin{align*} y^{\prime }&=\frac {t +y+1}{t -y+3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.881

2507

\begin{align*} 1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

24.217

2508

\begin{align*} t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.276

2509

\begin{align*} 2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (\cos \left (y\right ) t^{2}+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

3.670

2510

\begin{align*} 1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.271

2511

\begin{align*} \sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

8.715

2512

\begin{align*} \frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2.543

2513

\begin{align*} 2 t y^{3}+3 t^{2} y^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

0.116

2514

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘x=_G(y,y’)‘]

62.806

2515

\begin{align*} 3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.516

2516

\begin{align*} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_exact]

4.029

2517

\begin{align*} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.533

2518

\begin{align*} y^{\prime }&=2 t \left (1+y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

1.678

2519

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

7.855

2520

\begin{align*} y^{\prime }&={\mathrm e}^{t}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

8.205

2521

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t \right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

133.378

2522

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

10.286

2523

\begin{align*} y^{\prime }&=t +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

5.366

2524

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

70.018

2525

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

80.147

2526

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

67.868

2527

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.835

2528

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.868

2529

\begin{align*} y^{\prime }&={\mathrm e}^{\left (-t +y\right )^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.204

2530

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.020

2531

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.059

2532

\begin{align*} y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\ y \left (0\right ) &= 100 \\ \end{align*}

[_Bernoulli]

4.372

2533

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

11.307

2534

\begin{align*} y^{\prime }&=t \left (1+y\right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

1.677

2535

\begin{align*} y^{\prime }&=t y^{a} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

63.347

2536

\begin{align*} y^{\prime }&=t \sqrt {1-y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

9.954

2537

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+2 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.077

2538

\begin{align*} y^{\prime }&=1-t +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

3.208

2539

\begin{align*} y^{\prime }&=\frac {t^{2}+y^{2}}{1+t +y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_rational]

1.670

2540

\begin{align*} y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3.651

2541

\begin{align*} y^{\prime }&=t y^{3}-y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Bernoulli]

3.109

2542

\begin{align*} 2 t^{2} y^{\prime \prime }+3 y^{\prime } t -y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.823

2543

\begin{align*} y^{\prime \prime }+y^{\prime } t +y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.835

2544

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.587

2545

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.694

2546

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.782

2547

\begin{align*} 3 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.957

2548

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.583

2549

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.629

2550

\begin{align*} 5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.682

2551

\begin{align*} y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.343

2552

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

[[_2nd_order, _missing_x]]

0.558

2553

\begin{align*} t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.504

2554

\begin{align*} t^{2} y^{\prime \prime }+5 y^{\prime } t -2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

9.439

2555

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.148

2556

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.881

2557

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.053

2558

\begin{align*} 4 y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.808

2559

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.968

2560

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.384

2561

\begin{align*} 2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.631

2562

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.393

2563

\begin{align*} y^{\prime \prime }+w^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.467

2564

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.151

2565

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.360

2566

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.328

2567

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.763

2568

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.938

2569

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.806

2570

\begin{align*} 6 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.751

2571

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.280

2572

\begin{align*} y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.117

2573

\begin{align*} y^{\prime \prime }-4 y^{\prime } t +\left (4 t^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.112

2574

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.112

2575

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

2576

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +6 y&=0 \\ \end{align*}

[_Gegenbauer]

0.123

2577

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

2578

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.115

2579

\begin{align*} t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

2580

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.442

2581

\begin{align*} t^{2} y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.119

2582

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

2583

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

18.870

2584

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

69.980

2585

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

69.242

2586

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.525

2587

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

145.310

2588

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {1+t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.689

2589

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.839

2590

\begin{align*} t^{2} y^{\prime \prime }-2 y&=t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.924

2591

\begin{align*} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y&=1+t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

2592

\begin{align*} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=t^{2}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.401

2593

\begin{align*} y^{\prime \prime }+3 y&=t^{3}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

47.620

2594

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t \,{\mathrm e}^{\alpha t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.727

2595

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

60.088

2596

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.059

2597

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.323

2598

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

80.162

2599

\begin{align*} y^{\prime \prime }+4 y&=t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

71.013

2600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

83.047