2.2.33 Problems 3201 to 3300

Table 2.67: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3201

y+4y+5y=e2xcos(x)

[[_3rd_order, _missing_y]]

0.701

3202

y+y2y=e2xcos(2x)

[[_3rd_order, _missing_y]]

0.230

3203

y+2y=x2sin(x)

[[_3rd_order, _missing_y]]

0.240

3204

yy=x2cos(x)

[[_high_order, _linear, _nonhomogeneous]]

0.754

3205

y+4y=xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.781

3206

y+y=x2cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.890

3207

yy=x2cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.852

3208

y+4y=ex+sin(x)

[[_3rd_order, _missing_y]]

0.213

3209

y(5)+y=x2

[[_high_order, _missing_y]]

0.163

3210

2y+3y2y=x2ex

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

3211

y+y=sin(x)

[[_3rd_order, _missing_y]]

0.471

3212

yy=xsin(x)

[[_3rd_order, _missing_y]]

0.191

3213

y+2y=xcos(2x)

[[_3rd_order, _missing_y]]

0.243

3214

y+3y+2y=x2cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.782

3215

y4y+3y=x2sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

3216

yy=xsin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.789

3217

y+2y=x3sin(2x)

[[_2nd_order, _missing_y]]

3.081

3218

yy=xe2xsin(x)

[[_2nd_order, _missing_y]]

2.287

3219

y4y=xe2xcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.908

3220

y+2y=x2exsin(x)

[[_2nd_order, _missing_y]]

2.155

3221

x2y4yx+y=0

[[_Emden, _Fowler]]

1.110

3222

x2y+yx+16y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.010

3223

4x2y16yx+25y=0

[[_Emden, _Fowler]]

0.957

3224

x2y+5yx+10y=0

[[_Emden, _Fowler]]

1.137

3225

2x2y3yx18y=ln(x)

[[_2nd_order, _with_linear_symmetries]]

1.290

3226

2x2y3yx+2y=ln(x2)

[[_2nd_order, _with_linear_symmetries]]

2.230

3227

x2y3yx+4y=x3

[[_2nd_order, _with_linear_symmetries]]

1.447

3228

x2y+3yx+y=1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

3229

x3y+2x2yyx+y=1x

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.300

3230

x2y2yx+2y=4x+sin(ln(x))

[[_2nd_order, _with_linear_symmetries]]

2.999

3231

x2yyx+2y=x2ln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

2.461

3232

x2y+4yx+3y=(x1)ln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

75.797

3233

4x3y+8x2yyx+y=x+ln(x)

[[_3rd_order, _with_linear_symmetries]]

0.397

3234

3x3y+4x2y10yx+10y=4x2

[[_3rd_order, _with_linear_symmetries]]

0.515

3235

x4y+7x3y+9x2y6yx6y=cos(ln(x))

[[_high_order, _exact, _linear, _nonhomogeneous]]

1.455

3236

x3y2x2yyx+4y=sin(ln(x))

[[_3rd_order, _linear, _nonhomogeneous]]

1.021

3237

[xx=cos(t)y+y=4t]

system_of_ODEs

0.503

3238

[x+5x=3t2y+y=e3t]

system_of_ODEs

0.440

3239

[x+2x=3tx+2y+y=cos(2t)]

system_of_ODEs

0.934

3240

[xx+y=2sin(t)x+y=3y3x]

system_of_ODEs

0.665

3241

[2x+3xy=et5x3y=y+2t]

system_of_ODEs

1.243

3242

[5y3x5y=5t3x5y2x=0]

system_of_ODEs

0.275

3243

[x=3xy=2x+3yz=3y2z]

system_of_ODEs

0.493

3244

y=cos(t)

[[_2nd_order, _quadrature]]

0.935

3245

y=k2y

[[_2nd_order, _missing_x]]

1.714

3246

x+k2x=0

[[_2nd_order, _missing_x]]

1.546

3247

y3y+4=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.392

3248

x=k2x2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

68.608

3249

xy=x2+1

[[_2nd_order, _quadrature]]

0.765

3250

(1x)y=y

[[_2nd_order, _missing_y]]

0.956

3251

(x2+1)y+2x(y+1)=0

[[_2nd_order, _missing_y]]

1.229

3252

y=y3+y

[[_2nd_order, _missing_x]]

1.625

3253

xy+x=y

[[_2nd_order, _missing_y]]

1.161

3254

x+xt=t3

[[_2nd_order, _missing_y]]

1.022

3255

x2y=yx+1

[[_2nd_order, _missing_y]]

0.752

3256

y=1+y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.932

3257

(x2+1)y+yx=1

[[_2nd_order, _missing_y]]

1.250

3258

y=1+y2

[[_2nd_order, _missing_x]]

3.864

3259

y=y2+y

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.358

3260

y=yy

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.125

3261

(x2+1)y+1+y2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.065

3262

y+yy=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.281

3263

y+2y2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.710

3264

yy+y2=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.400

3265

yy+1=y2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.609

3266

y=y

[[_2nd_order, _missing_x]]

1.708

3267

yy+y2=yy

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.825

3268

2yyy2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.589

3269

y+2y2=2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.020

3270

y+y=y3

[[_2nd_order, _missing_x]]

3.950

3271

(1+y)y=3y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.936

3272

y=sec(x)tan(x)
i.c.

[[_2nd_order, _quadrature]]

3.899

3273

2y=ey
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.595

3274

y=y3
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.802

3275

y=y2cos(x)
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.263

3276

yyy2y=y2
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.998

3277

(x2+1)y+1+y2=0
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.174

3278

yy=y3+y2
i.c.

[[_2nd_order, _missing_x]]

156.037

3279

(1+y2)2=y2y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

49.789

3280

y=y2sin(x)
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.673

3281

2yy=y3+2y2
i.c.

[[_2nd_order, _missing_x]]

84.617

3282

xk2x=0
i.c.

[[_2nd_order, _missing_x]]

1.677

3283

yy=2y2+y2
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.397

3284

(1ex)y=exy
i.c.

[[_2nd_order, _missing_y]]

2.113

3285

4y2=x2y2

[_separable]

1.575

3286

xyy2+(x+y)y+1=0

[_quadrature]

0.454

3287

1+(2yx2)y22x2yy2=0

[‘y=_G(x,y’)‘]

3.519

3288

x(y21)=2yy

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.331

3289

(1y2)y2=1

[_quadrature]

59.707

3290

xyy2+(xy1)y=y

[_rational]

11.259

3291

y2y2+xyy2x2=0

[_separable]

1.108

3292

y2y22xyy+2y2=x2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.276

3293

y3+(x+y2xy)y22yxy(x+y)=0

[_quadrature]

0.633

3294

yy2+(y2x3xy2)yxy(x2+y2)=0

[_quadrature]

0.753

3295

y=yx(y+1)

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.420

3296

y=x+3ln(y)

[_separable]

3.549

3297

y(1+y2)=2

[_quadrature]

0.607

3298

yy22yx+y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.058

3299

y2+y2=1

[_quadrature]

0.989

3300

x(y21)=2yy

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.267