2.2.33 Problems 3201 to 3300

Table 2.67: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3201

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.655

3202

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

0.197

3203

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.212

3204

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.103

3205

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.286

3206

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.885

3207

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.752

3208

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.178

3209

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

[[_high_order, _missing_y]]

0.156

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.311

3211

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.720

3212

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.178

3213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

[[_3rd_order, _missing_y]]

0.244

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.997

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.958

3216

\[ {}y^{\prime \prime }-y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.858

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

4.053

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

2.797

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.799

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3.038

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.770

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.657

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

1.510

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.991

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.963

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.898

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.937

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.116

3229

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.300

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

4.195

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.180

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.588

3233

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

[[_3rd_order, _with_linear_symmetries]]

0.431

3234

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

[[_3rd_order, _with_linear_symmetries]]

0.560

3235

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

1.870

3236

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.983

3237

\[ {}\left [\begin {array}{c} x^{\prime }-x=\cos \left (t \right ) \\ y^{\prime }+y=4 t \end {array}\right ] \]

system_of_ODEs

0.463

3238

\[ {}\left [\begin {array}{c} x^{\prime }+5 x=3 t^{2} \\ y^{\prime }+y={\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

0.425

3239

\[ {}\left [\begin {array}{c} x^{\prime }+2 x=3 t \\ x^{\prime }+2 y^{\prime }+y=\cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.741

3240

\[ {}\left [\begin {array}{c} x^{\prime }-x+y=2 \sin \left (t \right ) \\ x^{\prime }+y^{\prime }=3 y-3 x \end {array}\right ] \]

system_of_ODEs

0.634

3241

\[ {}\left [\begin {array}{c} 2 x^{\prime }+3 x-y={\mathrm e}^{t} \\ 5 x-3 y^{\prime }=y+2 t \end {array}\right ] \]

system_of_ODEs

0.678

3242

\[ {}\left [\begin {array}{c} 5 y^{\prime }-3 x^{\prime }-5 y=5 t \\ 3 x^{\prime }-5 y^{\prime }-2 x=0 \end {array}\right ] \]

system_of_ODEs

0.226

3243

\[ {}\left [\begin {array}{c} x^{\prime }=3 x \\ y^{\prime }=2 x+3 y \\ z^{\prime }=3 y-2 z \end {array}\right ] \]

system_of_ODEs

0.465

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

1.713

3245

\[ {}y^{\prime \prime } = k^{2} y \]

[[_2nd_order, _missing_x]]

3.977

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

[[_2nd_order, _missing_x]]

2.023

3247

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.394

3248

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

73.090

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

1.084

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

1.201

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.698

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

[[_2nd_order, _missing_x]]

1.734

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

1.398

3254

\[ {}x^{\prime \prime }+x^{\prime } t = t^{3} \]

[[_2nd_order, _missing_y]]

1.891

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

[[_2nd_order, _missing_y]]

1.084

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.434

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

34.938

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

0.444

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.586

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.731

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.857

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.633

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.218

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.476

3265

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.403

3266

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

2.212

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.820

3268

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.374

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.337

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x]]

0.771

3271

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.513

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3.271

3273

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

20.460

3274

\[ {}y^{\prime \prime } = y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.816

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.605

3276

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.734

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.685

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

1.776

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

15.543

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.527

3281

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

1.925

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.737

3283

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.572

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

2.222

3285

\[ {}4 y^{2} = {y^{\prime }}^{2} x^{2} \]

[_separable]

3.004

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

1.489

3287

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2} = 0 \]

[‘y=_G(x,y’)‘]

3.102

3288

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.386

3289

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.595

3290

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

[_rational]

8.203

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

5.392

3292

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.800

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

2.240

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right ) = 0 \]

[_quadrature]

2.152

3295

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.803

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

2.042

3297

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

[_quadrature]

0.484

3298

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.787

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

0.566

3300

\[ {}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.360