2.14.21.11 problem 2011 out of 2993

Link to actual problem [9529] \[ \boxed {x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-x} \sqrt {x}\, \operatorname {BesselI}\left (v -\frac {1}{2}, x\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{x} y}{\sqrt {x}\, \operatorname {BesselI}\left (v -\frac {1}{2}, x\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-x} \sqrt {x}\, \operatorname {BesselK}\left (v -\frac {1}{2}, x\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{x} y}{\sqrt {x}\, \operatorname {BesselK}\left (v -\frac {1}{2}, x\right )}\right ] \\ \end{align*}